论文标题
$π^3 $涉及黄金比率的串联表示形式
Series representations for $π^3$ involving the golden ratio
论文作者
论文摘要
尽管许多系列以$π$和$π^2 $存在,但很少有人以$π^3 $而闻名。在本文中,我们使用Euler获得的三角身份得出,$π^3 $的两个表示,涉及无限总和和黄金比率。可以将该方法概括以获得进一步的序列,并以$π^3 $与其他数学常数有关。
Although many series exist for $π$ and $π^2$, very few are known for $π^3$. In this article, we derive, using a trigonometric identity obtained by Euler, two representations of $π^3$ involving infinite sums and the golden ratio. The methodology can be generalized in order to obtain further series, relating by the way $π^3$ to other mathematical constants.