论文标题
TINC:视网膜OCT体积中的临时知情疾病进展模型的非对比度学习
TINC: Temporally Informed Non-Contrastive Learning for Disease Progression Modeling in Retinal OCT Volumes
论文作者
论文摘要
最近的对比学习方法在低标签制度中实现了最先进的方法。但是,培训需要大批量和重型增强,以创建图像的多个视图。使用非对抗性方法,负面因素被隐式地纳入损失中,允许不同的图像和模态作为对。尽管医学成像中的元信息(即年龄,性别)很丰富,但注释又嘈杂,容易出现阶级失衡。在这项工作中,我们使用时间知情的非对抗性损失(TINC)在纵向光学相干断层扫描(OCT)数据集中利用已经存在的时间信息(来自患者的不同访问),而无需增加复杂性,并且需要负面对。此外,我们的新型配对方案可以避免重大增强,并将时间信息隐含地纳入对。最后,这些从训练中学到的表示在预测时间信息对下游任务至关重要的疾病进程方面更为成功。更具体地说,我们的模型在预测从中间年龄相关的黄斑变性(AMD)到晚期湿AMD阶段的时间范围内的转化风险胜过现有模型。
Recent contrastive learning methods achieved state-of-the-art in low label regimes. However, the training requires large batch sizes and heavy augmentations to create multiple views of an image. With non-contrastive methods, the negatives are implicitly incorporated in the loss, allowing different images and modalities as pairs. Although the meta-information (i.e., age, sex) in medical imaging is abundant, the annotations are noisy and prone to class imbalance. In this work, we exploited already existing temporal information (different visits from a patient) in a longitudinal optical coherence tomography (OCT) dataset using temporally informed non-contrastive loss (TINC) without increasing complexity and need for negative pairs. Moreover, our novel pair-forming scheme can avoid heavy augmentations and implicitly incorporates the temporal information in the pairs. Finally, these representations learned from the pretraining are more successful in predicting disease progression where the temporal information is crucial for the downstream task. More specifically, our model outperforms existing models in predicting the risk of conversion within a time frame from intermediate age-related macular degeneration (AMD) to the late wet-AMD stage.