论文标题

物理知识的机器学习,用于结构健康监测

Physics-informed machine learning for Structural Health Monitoring

论文作者

Cross, Elizabeth J, Gibson, Samuel J, Jones, Matthew R, Pitchforth, Daniel J, Zhang, Sikai, Rogers, Timothy J

论文摘要

在结构性健康监测中使用机器学习的情况变得越来越普遍,因为许多固有的任务(例如回归和分类)在开发基于条件的评估中自然而然地属于其职责。本章介绍了物理知识的机器学习的概念,其中人们适应了ML算法来说明工程师通常会试图建模或评估的结构的物理洞察力。本章将演示将简单的基于物理模型与数据驱动的模型相结合的灰色模型如何在SHM设置中提高预测能力。此处证明的方法的特殊优势是模型的推广能力,具有不同的预测能力。这是一项需要评估的关键问题,或者监视数据不涵盖结构将经历的操作条件时。 本章将概述物理知识的ML,并在贝叶斯环境中引入了许多用于灰色盒子建模的新方法。讨论的主要ML工具将是高斯过程回归,我们将证明如何通过约束,平均功能和内核设计以及最终在状态空间设置中通过约束来合并物理假设/模型。将展示一系列SHM应用程序,从负载监视离岸和航空航天结构的任务到长期跨桥的性能监控。

The use of machine learning in Structural Health Monitoring is becoming more common, as many of the inherent tasks (such as regression and classification) in developing condition-based assessment fall naturally into its remit. This chapter introduces the concept of physics-informed machine learning, where one adapts ML algorithms to account for the physical insight an engineer will often have of the structure they are attempting to model or assess. The chapter will demonstrate how grey-box models, that combine simple physics-based models with data-driven ones, can improve predictive capability in an SHM setting. A particular strength of the approach demonstrated here is the capacity of the models to generalise, with enhanced predictive capability in different regimes. This is a key issue when life-time assessment is a requirement, or when monitoring data do not span the operational conditions a structure will undergo. The chapter will provide an overview of physics-informed ML, introducing a number of new approaches for grey-box modelling in a Bayesian setting. The main ML tool discussed will be Gaussian process regression, we will demonstrate how physical assumptions/models can be incorporated through constraints, through the mean function and kernel design, and finally in a state-space setting. A range of SHM applications will be demonstrated, from loads monitoring tasks for off-shore and aerospace structures, through to performance monitoring for long-span bridges.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源