论文标题
Dimorphos Dart撞击射流的基于地面的可观察性:光度预测
Ground-based observability of Dimorphos DART impact ejecta: Photometric predictions
论文作者
论文摘要
双小行星重定向测试(DART)是NASA任务,旨在撞击二进制(65803)Didymos系统的Dimorphos弹丸,以研究其轨道偏转。由于撞击的结果,将从人体上弹出灰尘云,在撞击后的小时或几天内可能形成瞬态昏迷或类似彗星的尾巴,可以使用地面仪器观察到。根据影响器的质量和速度以及使用已知的缩放定律,可以大致估算弹出的总质量。然后,为了提供昏迷,尾部范围和形态的近似预期亮度水平,我们通过整合其运动方程来繁殖颗粒的轨道,并使用蒙特卡洛方法研究了昏迷和尾巴亮度的演变。对于指数的典型幂律粒度分布-3.5,有半径r $ _ {rmin} $ = 1 $μ$ m和r $ _ {max} $ = 1 cm,并且射出速度接近二氧化合物的逃逸速度的10倍,我们预测,$ \ sim $ 3型升高的亮度增加了一定的幅度,即在撞击之后的一定程度上,并在某种程度上增加了一定的时间。如果现行的弹出机制来自冲击引起的地震波,那将是这种情况。但是,如果大多数弹射器以$ \ gtrsim $ 100 $ \ mathrm {m \;;; s^{ - 1}} $,事件的可观察性将减少到很短的时间跨度,即一天或较短的顺序。
The Double Asteroid Redirection Test (DART) is a NASA mission intended to crash a projectile on Dimorphos, the secondary component of the binary (65803) Didymos system, to study its orbit deflection. As a consequence of the impact, a dust cloud will be be ejected from the body, potentially forming a transient coma- or comet-like tail on the hours or days following the impact, which might be observed using ground-based instrumentation. Based on the mass and speed of the impactor, and using known scaling laws, the total mass ejected can be roughly estimated. Then, with the aim to provide approximate expected brightness levels of the coma and tail extent and morphology, we have propagated the orbits of the particles ejected by integrating their equation of motion, and have used a Monte Carlo approach to study the evolution of the coma and tail brightness. For typical power-law particle size distribution of index --3.5, with radii r$_{rmin}$=1 $μ$m and r$_{max}$=1 cm, and ejection speeds near 10 times the escape velocity of Dimorphos, we predict an increase of brightness of $\sim$3 magnitudes right after the impact, and a decay to pre-impact levels some 10 days after. That would be the case if the prevailing ejection mechanism comes from the impact-induced seismic wave. However, if most of the ejecta is released at speeds of the order of $\gtrsim$100 $\mathrm{m\; s^{-1}}$, the observability of the event would reduce to a very short time span, of the order of one day or shorter.