论文标题

通过低频等离子体沉积氮化硅的表面钝化III-V GAAS纳米氏菌的活性纳米光剂量

Surface Passivation of III-V GaAs Nanopillars by Low Frequency Plasma Deposition of Silicon Nitride for Active Nanophotonic Devices

论文作者

Jacob, Bejoys, Camarneiro, Filipe, Borme, Jérôme, Bondarchuk, Oleksandr, Nieder, Jana B., Romeira, Bruno

论文摘要

通过降低其非辐射状态,旨在提高III-V化合物材料的电子和光学性能,旨在提高其非辐射态的电子和光学性能,旨在旨在旨在高效IIII-V亚微米设备。尽管有很多进展,但仍然存在争议的争论,即化学处理和封盖介电层的组合可以最好地可重复保护III-VS的晶体表面,同时与随时可用的血浆沉积方法兼容。这项工作报告了一项系统的实验研究,该研究涉及硫化铵化学处理的作用,然后是介电涂层在GAAS/藻类纳米乳鼠的钝化作用中的作用。我们的结果最终表明,使用硫化铵,然后用低频血浆增强的化学沉积物封装,用稀薄的氮化硅封装,然后用薄薄的氮化硅封装来实现最佳的表面钝化。在这里,硫化的GAAS表面,高水平的氢离子和低频(380 kHz)激发等离子体,使氢的强烈轰击似乎在柱子的钝化机制中提供了共同的积极作用。与未经处理的纳米木相比,我们观察到最佳样品的光致发光(PL)集成强度的增长29倍。 X射线光电子光谱分析证实,最佳处理表明,凝固型和砷天然氧化物的显着去除。时间分辨的微型PL测量显示纳秒寿命,从而导致记录的低蚀刻GAAS纳米纳皮拉的记录低表​​面重组速度。我们实现了稳健,稳定和长期钝化的纳米表面,这使人们对纳米级发光二极管的高度内部量子效率(IQE> 0.5)产生了期望。增强的性能为许多其他纳米结构和设备(例如微型谐振器,激光器,光电探测器和太阳能电池)铺平了道路。

Numerous efforts have been devoted to improve the electronic and optical properties of III-V compound materials via reduction of their nonradiative states, aiming at highly-efficient III-V sub-micrometer devices. Despite many advances, there is still a controversial debate on which combination of chemical treatment and capping dielectric layer can best reproducibly protect the crystal surface of III-Vs, while being compatible with readily available plasma deposition methods. This work reports on a systematic experimental study on the role of sulfide ammonium chemical treatment followed by dielectric coating in the passivation effect of GaAs/AlGaAs nanopillars. Our results conclusively show that the best surface passivation is achieved using ammonium sulfide followed by encapsulation with a thin layer of silicon nitride by low frequency plasma enhanced chemical deposition. Here, the sulfurized GaAs surfaces, the high level of hydrogen ions and the low frequency (380 kHz) excitation plasma that enable intense bombardment of hydrogen, all seem to provide a combined active role in the passivation mechanism of the pillars. We observe up to a 29-fold increase of the photoluminescence (PL) integrated intensity for the best samples as compared to untreated nanopillars. X-ray photoelectron spectroscopy analysis confirms the best treatments show remarkable removal of gallium and arsenic native oxides. Time-resolved micro-PL measurements display nanosecond lifetimes resulting in a record-low surface recombination velocity for dry etched GaAs nanopillars. We achieve robust, stable and long-term passivated nanopillar surfaces which creates expectations for remarkable high internal quantum efficiency (IQE>0.5) in nanoscale light-emitting diodes. The enhanced performance paves the way to many other nanostructures and devices such as miniature resonators, lasers, photodetectors and solar cells.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源