论文标题
模块化优化作为图形神经网络的训练标准
Modularity Optimization as a Training Criterion for Graph Neural Networks
论文作者
论文摘要
图形卷积是一种最近可扩展的方法,用于通过在多个层上汇总本地节点信息来对属性图进行深度特征学习。这样的层仅考虑向前模型中节点邻居的属性信息,并且不将全球网络结构的知识纳入学习任务。特别是,模块化功能提供了有关网络社区结构的方便信息。在这项工作中,我们通过在图卷积模型中纳入网络的社区结构保存目标来研究对学习表示的质量的影响。我们通过在输出层中的成本函数中的明确正规化项,并通过辅助层计算出的附加损失项,以两种方式结合目标。我们报告了在图形卷积体系结构中保存术语的社区结构的效果。对两个归因的分射线网络的实验评估表明,社区保护目标的合并提高了稀疏标签制度中的半监督节点分类精度。
Graph convolution is a recent scalable method for performing deep feature learning on attributed graphs by aggregating local node information over multiple layers. Such layers only consider attribute information of node neighbors in the forward model and do not incorporate knowledge of global network structure in the learning task. In particular, the modularity function provides a convenient source of information about the community structure of networks. In this work we investigate the effect on the quality of learned representations by the incorporation of community structure preservation objectives of networks in the graph convolutional model. We incorporate the objectives in two ways, through an explicit regularization term in the cost function in the output layer and as an additional loss term computed via an auxiliary layer. We report the effect of community structure preserving terms in the graph convolutional architectures. Experimental evaluation on two attributed bibilographic networks showed that the incorporation of the community-preserving objective improves semi-supervised node classification accuracy in the sparse label regime.