论文标题
频率跳动和阻尼呼吸振荡的谐波振荡一维准次酸盐
Frequency beating and damping of breathing oscillations of a harmonically trapped one-dimensional quasicondensate
论文作者
论文摘要
我们使用有限的经典现场方法研究了在准二敏酸盐方面的谐波捕获的一维(1D)bose气体中的呼吸(单极)振荡及其阻尼。通过长时间通过密度曲线的RMS宽度的动力学来表征振荡,我们发现RMS宽度显示了两个不同频率的跳动。这意味着1D Bose气体不是在单个呼吸模式频率下振荡,如先前的研究所示,而是两种不同的呼吸模式的叠加,一种在接近$ \ simeq \!\ simeq \!\ sqrt {3}ωω$和另一个以$ \ simeq \!2Ω$中的频率上振荡。以$ \ sim \!\ sqrt {3}ω$的呼吸模式在较低的温度下占主导地位,深处在准谐解状态深处,并且可以归因于大部分密度分布的振荡,该密度分布组成的颗粒填充了低含量低的高级,高度粘贴的状态。另一方面,在$ \ simeq \!2Ω$处的呼吸模式在较高的温度下占主导地位,接近几乎理想的,退化的bose气体状态,归因于较高能量状态下由热颗粒的密度分布组成的尾巴的振荡。这两种呼吸模式具有不同的阻尼率,大量组件的阻尼速率大约是尾部成分的阻尼率。
We study the breathing (monopole) oscillations and their damping in a harmonically trapped one-dimensional (1D) Bose gas in the quasicondensate regime using a finite-temperature classical field approach. By characterising the oscillations via the dynamics of the density profile's rms width over long time, we find that the rms width displays beating of two distinct frequencies. This means that 1D Bose gas oscillates not at a single breathing mode frequency, as found in previous studies, but as a superposition of two distinct breathing modes, one oscillating at frequency close to $\simeq\!\sqrt{3}ω$ and the other at $\simeq\!2ω$, where $ω$ is the trap frequency. The breathing mode at $\sim\!\sqrt{3}ω$ dominates the beating at lower temperatures, deep in the quasicondensate regime, and can be attributed to the oscillations of the bulk of the density distribution comprised of particles populating low-energy, highly-occupied states. The breathing mode at $\simeq\!2ω$, on the other hand, dominates the beating at higher temperatures, close to the nearly ideal, degenerate Bose gas regime, and is attributed to the oscillations of the tails of the density distribution comprised of thermal particles in higher energy states. The two breathing modes have distinct damping rates, with the damping rate of the bulk component being approximately four times larger than that of the tails component.