论文标题

学习晶格量子场理论,具有等效性连续流

Learning Lattice Quantum Field Theories with Equivariant Continuous Flows

论文作者

Gerdes, Mathis, de Haan, Pim, Rainone, Corrado, Bondesan, Roberto, Cheng, Miranda C. N.

论文摘要

我们提出了一种新型的机器学习方法,用于从晶格场理论的高维概率分布中进行取样,该方法基于单个神经ode层,并结合了问题的完整对称性。我们在$ ϕ^4 $理论上测试了我们的模型,这表明它系统地超过了先前提出的基于流动效率的基于流的方法,并且对于较大的晶格而言,改进尤其明显。此外,我们证明我们的模型可以一次学习一个连续的理论家族,并且可以将学习的结果转移到更大的晶格中。这种概括进一步加剧了机器学习方法的优势。

We propose a novel machine learning method for sampling from the high-dimensional probability distributions of Lattice Field Theories, which is based on a single neural ODE layer and incorporates the full symmetries of the problem. We test our model on the $ϕ^4$ theory, showing that it systematically outperforms previously proposed flow-based methods in sampling efficiency, and the improvement is especially pronounced for larger lattices. Furthermore, we demonstrate that our model can learn a continuous family of theories at once, and the results of learning can be transferred to larger lattices. Such generalizations further accentuate the advantages of machine learning methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源