论文标题
与正规器兼容约束的稀疏性诱导优化问题的双重主要算法
Doubly majorized algorithm for sparsity-inducing optimization problems with regularizer-compatible constraints
论文作者
论文摘要
我们考虑一类稀疏性诱导优化问题,其约束集与正规器兼容,从某种意义上说,约束集在由稀疏性诱导的正规器引起的坐标转换后易于投影。我们的模型足够通用,可以像特殊情况一样涵盖有序的拉索模型及其变体,并具有一些常用的非凸刺诱导的正规化器。稀疏性诱导的正常化程序和约束集的存在在有效算法的设计上构成了挑战。在本文中,通过利用稀疏性诱导正规器中的绝对值对称性和其他属性,我们提出了一种新算法,称为偶有的主要算法(DMA),以解决此类问题。 DMA在每次迭代中的坐标转换之后将投影利用在约束集上,因此可以有效地执行。在不调用任何常用的约束资格条件(例如基于地平线亚分化的条件)的情况下,我们表明,DMA生成的序列的任何累积点都是所谓的$ψ_ {\ rm opt} $ sentary点,我们的常规概念,我们被$ l $ -Stationarity的概念定义为启发。我们还表明,我们的模型的任何全局最小化器都必须是$ψ_ {\ rm opt} $ - 固定点,而不会强加任何约束资格条件。最后,我们从数值上说明了DMA在用NonConvex正规机构求解有序拉索变体方面的性能。
We consider a class of sparsity-inducing optimization problems whose constraint set is regularizer-compatible, in the sense that, the constraint set becomes easy-to-project-onto after a coordinate transformation induced by the sparsity-inducing regularizer. Our model is general enough to cover, as special cases, the ordered LASSO model and its variants with some commonly used nonconvex sparsity-inducing regularizers. The presence of both the sparsity-inducing regularizer and the constraint set poses challenges on the design of efficient algorithms. In this paper, by exploiting absolute-value symmetry and other properties in the sparsity-inducing regularizer, we propose a new algorithm, called the Doubly Majorized Algorithm (DMA), for this class of problems. The DMA makes use of projections onto the constraint set after the coordinate transformation in each iteration, and hence can be performed efficiently. Without invoking any commonly used constraint qualification conditions such as those based on horizon subdifferentials, we show that any accumulation point of the sequence generated by DMA is a so-called $ψ_{\rm opt}$-stationary point, a new notion of stationarity we define as inspired by the notion of $L$-stationarity. We also show that any global minimizer of our model has to be a $ψ_{\rm opt}$-stationary point, again without imposing any constraint qualification conditions. Finally, we illustrate numerically the performance of DMA on solving variants of ordered LASSO with nonconvex regularizers.