论文标题

基于污渍隔离的指南改进了污渍翻译

Stain Isolation-based Guidance for Improved Stain Translation

论文作者

Brieu, Nicolas, Segerer, Felix J., Kapil, Ansh, Wortmann, Philipp, Schmidt, Guenter

论文摘要

使用生成的对抗神经网络和更精确的自行车gan是无监督和不配对的域翻译,是组织病理学图像的污渍翻译的最新技术。然而,它通常遭受循环一致但不具有结构的错误的存在。我们为一组方法提出了一种替代方法,该方法依赖于分割的一致性,可以保留病理结构。专注于免疫组织化学(IHC)和多重免疫荧光(MIF),我们引入了一种简单而有效的指导方案,作为一种损失函数,以利用污渍翻译和污渍分离的一致性。定性和定量实验显示了提出的方法改善两个域之间翻译的能力。

Unsupervised and unpaired domain translation using generative adversarial neural networks, and more precisely CycleGAN, is state of the art for the stain translation of histopathology images. It often, however, suffers from the presence of cycle-consistent but non structure-preserving errors. We propose an alternative approach to the set of methods which, relying on segmentation consistency, enable the preservation of pathology structures. Focusing on immunohistochemistry (IHC) and multiplexed immunofluorescence (mIF), we introduce a simple yet effective guidance scheme as a loss function that leverages the consistency of stain translation with stain isolation. Qualitative and quantitative experiments show the ability of the proposed approach to improve translation between the two domains.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源