论文标题

单细胞样品的基于分布的草图

Distribution-based Sketching of Single-Cell Samples

论文作者

Baskaran, Vishal Athreya, Ranek, Jolene, Shan, Siyuan, Stanley, Natalie, Oliva, Junier B.

论文摘要

现代的高通量单细胞免疫分析技术,例如流量,质量细胞术和单细胞RNA测序,可以轻松地测量多人组中数百万个细胞中大量蛋白质或基因特征的表达。尽管生物信息学方法可用于将免疫细胞异质性与感兴趣的外部变量(例如临床结果或实验标签)联系起来,但它们通常很难适应如此大量的概要细胞。为了减轻这种计算负担,通常有限数量的单元格是\ emph {sherped}或从每个患者中进行了采样。但是,现有的素描方法无法从稀有细胞群中充分分类稀有细胞,或者无法保留特定免疫细胞类型的真实频率。在这里,我们提出了一种基于内核牛群的新颖素描方法,该方法选择了所有细胞的有限子样本,同时保留了免疫细胞类型的潜在频率。我们在三个流量和质量细胞仪数据集以及一个单细胞RNA测序数据集上测试了我们的方法,并证明了素描的细胞(1)更准确地代表整体细胞景观,(2)(2)促进下游分析任务中的性能提高,例如根据患者的临床结果进行分类。 \ url {https://github.com/vishalathreya/set-summarization}公开获得用内核放牧的素描实现。

Modern high-throughput single-cell immune profiling technologies, such as flow and mass cytometry and single-cell RNA sequencing can readily measure the expression of a large number of protein or gene features across the millions of cells in a multi-patient cohort. While bioinformatics approaches can be used to link immune cell heterogeneity to external variables of interest, such as, clinical outcome or experimental label, they often struggle to accommodate such a large number of profiled cells. To ease this computational burden, a limited number of cells are typically \emph{sketched} or subsampled from each patient. However, existing sketching approaches fail to adequately subsample rare cells from rare cell-populations, or fail to preserve the true frequencies of particular immune cell-types. Here, we propose a novel sketching approach based on Kernel Herding that selects a limited subsample of all cells while preserving the underlying frequencies of immune cell-types. We tested our approach on three flow and mass cytometry datasets and on one single-cell RNA sequencing dataset and demonstrate that the sketched cells (1) more accurately represent the overall cellular landscape and (2) facilitate increased performance in downstream analysis tasks, such as classifying patients according to their clinical outcome. An implementation of sketching with Kernel Herding is publicly available at \url{https://github.com/vishalathreya/Set-Summarization}.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源