论文标题

时间感知的动态图嵌入异步结构进化

Time-aware Dynamic Graph Embedding for Asynchronous Structural Evolution

论文作者

Yang, Yu, Yin, Hongzhi, Cao, Jiannong, Chen, Tong, Nguyen, Quoc Viet Hung, Zhou, Xiaofang, Chen, Lei

论文摘要

动态图是指结构随时间变化的图形。尽管学习顶点表示(即嵌入)对动态图的好处,但现有作品仅将动态图视为顶点连接中的一系列变化,从而忽略了这种动态的至关重要的异步性质,其中每个局部结构的演变在不同时间启动在不同时间和持续时间的各种持续时间。为了在图中维持异步结构的演变,我们将动态图作为与顶点(TOV)和边缘(toe)的时间板相关的时间边缘序列进行创新。然后,提出了一个时间感知的变压器将顶点的动态连接嵌入到学习的顶点表示中。同时,我们将每个边缘序列视为一个整体,并嵌入其第一个顶点的TOV,以进一步编码时间敏感信息。在几个数据集上进行的广泛评估表明,我们的方法在广泛的图形挖掘任务中优于最先进的方法。同时,它非常有效且可扩展,可用于嵌入大规模的动态图。

Dynamic graphs refer to graphs whose structure dynamically changes over time. Despite the benefits of learning vertex representations (i.e., embeddings) for dynamic graphs, existing works merely view a dynamic graph as a sequence of changes within the vertex connections, neglecting the crucial asynchronous nature of such dynamics where the evolution of each local structure starts at different times and lasts for various durations. To maintain asynchronous structural evolutions within the graph, we innovatively formulate dynamic graphs as temporal edge sequences associated with joining time of vertices (ToV) and timespan of edges (ToE). Then, a time-aware Transformer is proposed to embed vertices' dynamic connections and ToEs into the learned vertex representations. Meanwhile, we treat each edge sequence as a whole and embed its ToV of the first vertex to further encode the time-sensitive information. Extensive evaluations on several datasets show that our approach outperforms the state-of-the-art in a wide range of graph mining tasks. At the same time, it is very efficient and scalable for embedding large-scale dynamic graphs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源