论文标题

环境感知考虑遮挡效果:多视图方法

Environment Sensing Considering the Occlusion Effect: A Multi-View Approach

论文作者

Tong, Xin, Zhang, Zhaoyang, Zhang, Yihan, Yang, Zhaohui, Huang, Chongwen, Wong, Kai-Kit, Debbah, Merouane

论文摘要

在本文中,我们考虑了在无线蜂窝框架内感知环境的问题。具体而言,多个用户设备(UES)将响料信号发送到一个或多个基站(BSS),然后一个集中式处理器从BS(S)获得的所有频道信息中检索环境信息。考虑到在无线上下文中常见的闭塞效果,我们从不同的用户和/或BS(S)中充分利用环境的不同视图,并提出了一种称为GAMP-MVSVR的有效传感算法(总体化基于宽带的基于基于基于基于的MESSAGE-MESSAGE-MESSAGE-MESSAGE-MESSAGE-MESSAGE-MESSAGE-MESSAGE-MESSAGE-MESSAGE-MESSAGE-MELT-VIEL-MYTI-VIEL DIVEWER-MOLIT-VIER-MYTI-VIEL稀疏介绍载体)。在提出的算法中,构建了多层因子图,以迭代估算云点的散射系数及其遮挡关系。在每次迭代中,根据简单的遮挡检测规则重新计算了稀疏环境的云点之间的遮挡关系,进而用来估计云点的散射系数。除了来自UES的多视图之外,我们提出的算法还可以通过Multi-Bs协作来提高感应性能。模拟结果验证其收敛性和有效性。

In this paper, we consider the problem of sensing the environment within a wireless cellular framework. Specifically, multiple user equipments (UEs) send sounding signals to one or multiple base stations (BSs) and then a centralized processor retrieves the environmental information from all the channel information obtained at the BS(s). Taking into account the occlusion effect that is common in the wireless context, we make full use of the different views of the environment from different users and/or BS(s), and propose an effective sensing algorithm called GAMP-MVSVR (generalized-approximate-message-passing-based multi-view sparse vector reconstruction). In the proposed algorithm, a multi-layer factor graph is constructed to iteratively estimate the scattering coefficients of the cloud points and their occlusion relationship. In each iteration, the occlusion relationship between the cloud points of the sparse environment is recalculated according to a simple occlusion detection rule, and in turn, used to estimate the scattering coefficients of the cloud points. Our proposed algorithm can achieve improved sensing performance with multi-BS collaboration in addition to the multi-views from the UEs. The simulation results verify its convergence and effectiveness.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源