论文标题
使用隐私感知培训数据面对变形攻击检测
Face Morphing Attack Detection Using Privacy-Aware Training Data
论文作者
论文摘要
变形面的图像对面对识别的安全系统构成了严重威胁,因为它们可用于非法验证具有单个变形图像的多人身份。现代检测算法学会使用真实个体的真实图像来识别这种变形攻击。这种方法提出了各种隐私问题,并限制了公开可用的培训数据的数量。在本文中,我们探讨了仅在不存在的人及其各自的形态上接受训练的检测算法的功效。为此,对两种专用算法进行了合成数据的训练,然后在三个现实世界数据集上进行评估,即:FRLL-MORPHS,FERET-MORPHS和FRGC-MORPHS。我们的结果表明,合成的面部图像可以成功用于检测算法的训练过程,并将其概括为现实世界情景。
Images of morphed faces pose a serious threat to face recognition--based security systems, as they can be used to illegally verify the identity of multiple people with a single morphed image. Modern detection algorithms learn to identify such morphing attacks using authentic images of real individuals. This approach raises various privacy concerns and limits the amount of publicly available training data. In this paper, we explore the efficacy of detection algorithms that are trained only on faces of non--existing people and their respective morphs. To this end, two dedicated algorithms are trained with synthetic data and then evaluated on three real-world datasets, i.e.: FRLL-Morphs, FERET-Morphs and FRGC-Morphs. Our results show that synthetic facial images can be successfully employed for the training process of the detection algorithms and generalize well to real-world scenarios.