论文标题
使用多层网络的情绪分析用于推文的图形表示
Emotion Analysis using Multi-Layered Networks for Graphical Representation of Tweets
论文作者
论文摘要
预期观众对某些文本的反应对于社会的几个方面不可或缺,包括政治,研究和商业行业。情感分析(SA)是一种有用的自然语言处理(NLP)技术,它利用词汇/统计和深度学习方法来确定不同尺寸的文本是否表现出正面,负面或中立的情绪。但是,目前缺乏工具来分析独立文本的组并从整体中提取主要情感。因此,当前的论文提出了一种新型算法,称为多层推文分析仪(MLTA),该算法使用多层网络(MLN)以图形方式对社交媒体文本进行了图形方式,以便更好地编码跨独立推文集的关系。与其他表示方法相比,图形结构能够在复杂的生态系统中捕获有意义的关系。最先进的图形神经网络(GNN)用于从Tweet-MLN中提取信息,并根据提取的图形特征进行预测。结果表明,与标准的正面,负或中性相比,MLTA不仅可以从更大的可能情绪中预测,从而提供了更准确的情感,还允许对Twitter数据进行准确的组级预测。
Anticipating audience reaction towards a certain piece of text is integral to several facets of society ranging from politics, research, and commercial industries. Sentiment analysis (SA) is a useful natural language processing (NLP) technique that utilizes both lexical/statistical and deep learning methods to determine whether different sized texts exhibit a positive, negative, or neutral emotion. However, there is currently a lack of tools that can be used to analyse groups of independent texts and extract the primary emotion from the whole set. Therefore, the current paper proposes a novel algorithm referred to as the Multi-Layered Tweet Analyzer (MLTA) that graphically models social media text using multi-layered networks (MLNs) in order to better encode relationships across independent sets of tweets. Graph structures are capable of capturing meaningful relationships in complex ecosystems compared to other representation methods. State of the art Graph Neural Networks (GNNs) are used to extract information from the Tweet-MLN and make predictions based on the extracted graph features. Results show that not only does the MLTA predict from a larger set of possible emotions, delivering a more accurate sentiment compared to the standard positive, negative or neutral, it also allows for accurate group-level predictions of Twitter data.