论文标题
通过集成光谱法的新型抓手设计进行预盖物体材料分类
Pregrasp Object Material Classification by a Novel Gripper Design with Integrated Spectroscopy
论文作者
论文摘要
机器人可以根据能够根据其材料属性对其进行互动或操纵的对象而受益。这种能力可通过适当的抓握姿势和力选择来确保对复杂物体进行精细操纵。先前的工作集中在触觉或视觉处理上,以确定掌握时间的材料类型。在这项工作中,我们介绍了一种新型的平行机器人抓地力设计,以及一种从抓手手指内收集光谱读数和视觉图像的方法。我们训练一个非线性支持向量机(SVM),该机器可以通过递归估计将要抓住的对象的材料进行分类,并且随着从指尖到对象的距离降低的距离,置信度提高。为了验证硬件设计和分类方法,我们从16种真实和假水果品种(由聚苯乙烯/塑料组成)中收集样品,从而导致一个包含光谱曲线,场景图像和高分辨率纹理图像的数据集,因为对象被抓住,抬高,抬高和释放。我们的建模方法证明了在32类决策问题中对对象进行分类时的准确性为96.4%。这比最先进的计算机视觉算法的状态在区分视觉上相似的材料方面提高了29.4%。与先前的工作相反,我们的递归估计模型解释了频谱信号强度的增加,并允许在抓手接近对象时做出决策。我们得出的结论是,光谱法是使机器人不仅能够对握住的对象进行分类,而且还了解其潜在的材料组成。
Robots benefit from being able to classify objects they interact with or manipulate based on their material properties. This capability ensures fine manipulation of complex objects through proper grasp pose and force selection. Prior work has focused on haptic or visual processing to determine material type at grasp time. In this work, we introduce a novel parallel robot gripper design and a method for collecting spectral readings and visual images from within the gripper finger. We train a nonlinear Support Vector Machine (SVM) that can classify the material of the object about to be grasped through recursive estimation, with increasing confidence as the distance from the finger tips to the object decreases. In order to validate the hardware design and classification method, we collect samples from 16 real and fake fruit varieties (composed of polystyrene/plastic) resulting in a dataset containing spectral curves, scene images, and high-resolution texture images as the objects are grasped, lifted, and released. Our modeling method demonstrates an accuracy of 96.4% in classifying objects in a 32 class decision problem. This represents a performance improvement by 29.4% over the state of the art computer vision algorithms at distinguishing between visually similar materials. In contrast to prior work, our recursive estimation model accounts for increasing spectral signal strength and allows for decisions to be made as the gripper approaches an object. We conclude that spectroscopy is a promising sensing modality for enabling robots to not only classify grasped objects but also understand their underlying material composition.