论文标题

可扩展的极性代码构建用于连续取消列表解码:基于图神经网络的方法

Scalable Polar Code Construction for Successive Cancellation List Decoding: A Graph Neural Network-Based Approach

论文作者

Liao, Yun, Hashemi, Seyyed Ali, Yang, Hengjie, Cioffi, John M.

论文摘要

虽然可以通过对位渠道进行排序来有效地实现用于连续策略解码的极性代码,但要以有效且可扩展的方式找到用于循环划分的连续策略列表(CA-SCL)的最佳极性代码(CA-SCL)。本文首先将极地代码映射到一个唯一的异质图,称为“极地代码构建消息通话”(PCCMP)图。接下来,提出了一种基于图形神经网络网络的迭代消息通话(IMP)算法,旨在找到与CA-SCL解码下的最小帧错误率相对应的PCCMP图。这种新的IMP算法的主要优势在于其可伸缩性。也就是说,模型的复杂性独立于区块长度和代码速率,并且在短极代码上训练有素的IMP模型可以很容易地应用于长极性代码的构造。数值实验表明,基于IMP的极性代码构建体在CA-SCL解码下的表现优于经典结构。此外,当对长度为128极性代码进行训练的IMP模型直接适用于具有不同代码速率和区块长度的极性代码的构建时,模拟表明,这些极性代码构建体为5G极性代码提供了可比的性能。

While constructing polar codes for successive-cancellation decoding can be implemented efficiently by sorting the bit-channels, finding optimal polar codes for cyclic-redundancy-check-aided successive-cancellation list (CA-SCL) decoding in an efficient and scalable manner still awaits investigation. This paper first maps a polar code to a unique heterogeneous graph called the polar-code-construction message-passing (PCCMP) graph. Next, a heterogeneous graph-neural-network-based iterative message-passing (IMP) algorithm is proposed which aims to find a PCCMP graph that corresponds to the polar code with minimum frame error rate under CA-SCL decoding. This new IMP algorithm's major advantage lies in its scalability power. That is, the model complexity is independent of the blocklength and code rate, and a trained IMP model over a short polar code can be readily applied to a long polar code's construction. Numerical experiments show that IMP-based polar-code constructions outperform classical constructions under CA-SCL decoding. In addition, when an IMP model trained on a length-128 polar code directly applies to the construction of polar codes with different code rates and blocklengths, simulations show that these polar code constructions deliver comparable performance to the 5G polar codes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源