论文标题
VIP-SLAM:有效的紧密耦合RGB-D视觉惯性平面大满贯
VIP-SLAM: An Efficient Tightly-Coupled RGB-D Visual Inertial Planar SLAM
论文作者
论文摘要
在本文中,我们提出了一个与RGB,深度,IMU和结构化平面信息融合的紧密耦合的大满贯系统。传统的基于稀疏点的大满贯系统始终保持大量地图点以建模环境。大量的地图点使我们具有很高的计算复杂性,因此很难在移动设备上部署。另一方面,平面是人造环境中的常见结构,尤其是在室内环境中。我们通常可以使用少量飞机代表大型场景。因此,本文的主要目的是降低基于稀疏点的大满贯的高复杂性。我们构建了一个轻巧的后端地图,该地图由几个平面和地图点组成,以相等或更高的精度实现有效的捆绑捆绑调整(BA)。我们使用统计约束来消除优化中众多平面点的参数并降低BA的复杂性。我们将同型和点对点约束的参数和测量分开,并压缩测量部分,以进一步有效地提高BA速度。我们还将平面信息集成到整个系统中,以实现强大的平面特征提取,数据关联和全球一致的平面重建。最后,我们进行消融研究,并使用模拟和真实环境数据中的类似方法比较我们的方法。我们的系统在准确性和效率方面具有明显的优势。即使平面参数参与了优化,我们也通过使用平面结构有效地简化了后端图。全局捆绑捆绑调整的速度几乎是基于稀疏点的SLAM算法的2倍。
In this paper, we propose a tightly-coupled SLAM system fused with RGB, Depth, IMU and structured plane information. Traditional sparse points based SLAM systems always maintain a mass of map points to model the environment. Huge number of map points bring us a high computational complexity, making it difficult to be deployed on mobile devices. On the other hand, planes are common structures in man-made environment especially in indoor environments. We usually can use a small number of planes to represent a large scene. So the main purpose of this article is to decrease the high complexity of sparse points based SLAM. We build a lightweight back-end map which consists of a few planes and map points to achieve efficient bundle adjustment (BA) with an equal or better accuracy. We use homography constraints to eliminate the parameters of numerous plane points in the optimization and reduce the complexity of BA. We separate the parameters and measurements in homography and point-to-plane constraints and compress the measurements part to further effectively improve the speed of BA. We also integrate the plane information into the whole system to realize robust planar feature extraction, data association, and global consistent planar reconstruction. Finally, we perform an ablation study and compare our method with similar methods in simulation and real environment data. Our system achieves obvious advantages in accuracy and efficiency. Even if the plane parameters are involved in the optimization, we effectively simplify the back-end map by using planar structures. The global bundle adjustment is nearly 2 times faster than the sparse points based SLAM algorithm.