论文标题

在教育交互式模拟中的早期预测的通用方法

Generalisable Methods for Early Prediction in Interactive Simulations for Education

论文作者

Cock, Jade Maï, Marras, Mirko, Giang, Christian, Käser, Tanja

论文摘要

互动模拟使学生可以通过自己的探索来发现科学现象的基本原理。不幸的是,学生经常在这些环境中有效地学习。根据他们的预期表现对学生的互动数据进行分类,有可能实现自适应指导并因此改善学生的学习。该领域的先前研究主要集中于A-tosteriori分析或研究限于一个特定的预测模型和仿真。在本文中,我们研究了模型的质量和普遍性,以根据跨交互式模拟的学生的点击数据进行概念性理解的早期预测。我们首先通过他们的任务表现来衡量学生的概念理解。然后,我们建议一种新型的功能,从ClickStream数据开始,既编码仿真的状态和学生执行的动作。我们最终建议将这些功能馈送到基于GRU的模型中,有或没有注意力进行预测。在两个不同的模拟上进行实验,并在两个不同的人群中表明,我们所提出的模型的表现优于浅层学习基准,并更好地推广到不同的学习环境和人群。将注意力包括在模型中可以提高有效的查询。源代码可在GitHub(https://github.com/epfl-ml4ed/beerslaw-lab.git)上获得。

Interactive simulations allow students to discover the underlying principles of a scientific phenomenon through their own exploration. Unfortunately, students often struggle to learn effectively in these environments. Classifying students' interaction data in the simulations based on their expected performance has the potential to enable adaptive guidance and consequently improve students' learning. Previous research in this field has mainly focused on a-posteriori analyses or investigations limited to one specific predictive model and simulation. In this paper, we investigate the quality and generalisability of models for an early prediction of conceptual understanding based on clickstream data of students across interactive simulations. We first measure the students' conceptual understanding through their in-task performance. Then, we suggest a novel type of features that, starting from clickstream data, encodes both the state of the simulation and the action performed by the student. We finally propose to feed these features into GRU-based models, with and without attention, for prediction. Experiments on two different simulations and with two different populations show that our proposed models outperform shallow learning baselines and better generalise to different learning environments and populations. The inclusion of attention into the model increases interpretability in terms of effective inquiry. The source code is available on Github (https://github.com/epfl-ml4ed/beerslaw-lab.git).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源