论文标题

在正交司法

On torus quotients of Schubert varieties in Orthogonal Grassmannian

论文作者

Nayek, Arpita, Saha, Pinakinath

论文摘要

令$ g = spin(8n,\ mathbb {c})(n \ ge 1)$和$ t_ {g} $是$g。$g。$ p^{α__{4n}}(\ supset t_ {g})$的最大圆环。 $ x $是$ g/p^{α_{4n}} $在$ g/p^{α_{4n}} $相对于$ t $ linearized的半稳定点的非常丰富的线束$ \ MATHCAL {l}(2Ω__{4n})。 0}} r_k,$ where $ r_k = h^{0}(x,x,\ mathcal {l}^{\ otimes k}(2Ω__{4n}))^{t_ {g}}}。在本文中,我们证明了$ n = 1 $和$ x = g/p = g/p^g/p^= g/p^= g/p^ran $ \ mathbb {c} $ - 代数$ r $由$ r_1。$。因此,我们证明$ g/p^{α_{4}} $的git商与$ t_ {g} $ linearized $ hilearearized $ noupe able ummate $ $ $ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ r \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ r \ math cancal companty的git商(α_{4}} $ a射影空间$(\ Mathbb {p}^{2},\ Mathcal {o} _ {\ Mathbb {p}^{2}}(1))$作为偏光品种。此外,我们证明$ r $由$ r_1 $和$ r_2 $生成,对于某些Schubert品种,$ g/p^{α_{4n}} $(对于$ n \ geq 2 $)。结果,我们证明这些舒伯特品种的git商相对于$ t_g $ linearized的下降非常正常,非常丰富的线束$ \ mathcal $ \ mathcal {l}(4Ω__{4N})。$ $ 此外,对于$ g = spin(2n,\ mathbb {c})(n \ ge 4)$(分别为$ g = sp = sp(2n,\ mathbb {c})(n \ ge 2)$)和最大$ t_g $ g of $ g,$ g,$我们证明了$ g/p g/p randistient at $ g/p^randist is juppligity is justplion uppjectiment在$ t_g $中固定非常丰富的线条捆绑$ \ MATHCAL {l}(2Ω_{1})$,并且对投射空间$(\ Mathbb {p}^{n-2}^{n-2},\ Mathcal {O} $(\ mathbb {p}^{n-1},\ Mathcal {o} _ {\ Mathbb {p}^{n-1}}}(1))$作为两极化的品种。

Let $G=Spin(8n, \mathbb{C})(n\ge 1)$ and $T_{G}$ be a maximal torus of $G.$ Let $P^{α_{4n}}(\supset T_{G})$ be the maximal parabolic subgroup of $G$ corresponding to the simple root $α_{4n}.$ Let $X$ be a Schubert variety in $G/P^{α_{4n}}$ admitting semi-stable point with respect to the $T$-linearized very ample line bundle $\mathcal{L}(2ω_{4n}).$ Let $R=\bigoplus_{k \in \mathbb{Z}_{\geq 0}}R_k,$ where $R_k=H^{0}(X, \mathcal{L}^{\otimes k}(2ω_{4n}))^{T_{G}}.$ In this article, we prove that for $n=1$ and $X=G/P^{α_4},$ the graded $\mathbb{C}$-algebra $R$ is generated by $R_1.$ As a consequence, we prove that the GIT quotient of $G/P^{α_{4}}$ is projectively normal with respect to the descent of the $T_{G}$-linearized very ample line bundle $\mathcal{L}(2ω_{4})$ and is isomorphic to the projective space $(\mathbb{P}^{2},\mathcal{O}_{\mathbb{P}^{2}}(1))$ as a polarized variety. Further, we prove that $R$ is generated by $R_1$ and $R_2$ for some Schubert varieties in $G/P^{α_{4n}}$ (for $n \geq 2$). As a consequence, we prove that the GIT quotient of those Schubert varieties are projectively normal with respect to the descent of the $T_G$-linearized very ample line bundle $\mathcal{L}(4ω_{4n}).$ Moreover, for $G = Spin(2n,\mathbb{C})(n \ge 4)$ (respectively, $G=Sp(2n, \mathbb{C}) (n\ge 2)$) and a maximal torus $T_G$ of $G,$ we prove that the GIT quotient of $G/P^{α_{1}}$ is projectively normal with respect to the descent of the $T_G$-linearized very ample line bundle $\mathcal{L}(2ω_{1})$ and is isomorphic to the projective space $(\mathbb{P}^{n-2},\mathcal{O}_{\mathbb{P}^{n-2}}(1))$ (respectively, $(\mathbb{P}^{n-1},\mathcal{O}_{\mathbb{P}^{n-1}}(1))$ as a polarized variety.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源