论文标题

量子神经网络压缩

Quantum Neural Network Compression

论文作者

Hu, Zhirui, Dong, Peiyan, Wang, Zhepeng, Lin, Youzuo, Wang, Yanzhi, Jiang, Weiwen

论文摘要

模型压缩(例如修剪和量化)已被广泛应用于在资源有限的经典设备上优化神经网络。最近,人们对变分量子电路(VQC)的兴趣越来越大,即量子计算机上的一种神经网络(又称量子神经网络)。众所周知,近期的量子设备具有高噪声和有限的资源(即量子位,Qubits);但是,如何压缩量子神经网络尚未得到彻底研究。人们可能会认为将经典压缩技术应用于量子场景是很简单的。但是,本文表明,量子和经典神经网络的压缩之间存在差异。根据我们的观察,我们声称必须参与压缩过程。最重要的是,我们提出了第一个系统的框架,即COMPVQC,以压缩量子神经网络(QNNS)。在CompVQC中,关键组件是一种新型的压缩算法,该算法基于交替的乘数方法(ADMM)方法的交替方向方法。实验证明了COMPVQC的优势,以微不足道的精度下降(<1%)降低了电路深度(几乎超过2.5%),这表现优于其他竞争对手。另一个有前途的事实是,我们的COMPVQC确实可以促进QNN在近期噪声量子设备上的鲁棒性。

Model compression, such as pruning and quantization, has been widely applied to optimize neural networks on resource-limited classical devices. Recently, there are growing interest in variational quantum circuits (VQC), that is, a type of neural network on quantum computers (a.k.a., quantum neural networks). It is well known that the near-term quantum devices have high noise and limited resources (i.e., quantum bits, qubits); yet, how to compress quantum neural networks has not been thoroughly studied. One might think it is straightforward to apply the classical compression techniques to quantum scenarios. However, this paper reveals that there exist differences between the compression of quantum and classical neural networks. Based on our observations, we claim that the compilation/traspilation has to be involved in the compression process. On top of this, we propose the very first systematical framework, namely CompVQC, to compress quantum neural networks (QNNs).In CompVQC, the key component is a novel compression algorithm, which is based on the alternating direction method of multipliers (ADMM) approach. Experiments demonstrate the advantage of the CompVQC, reducing the circuit depth (almost over 2.5 %) with a negligible accuracy drop (<1%), which outperforms other competitors. Another promising truth is our CompVQC can indeed promote the robustness of the QNN on the near-term noisy quantum devices.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源