论文标题
在平滑决策边界下的最小最佳深神网络分类器
Minimax Optimal Deep Neural Network Classifiers Under Smooth Decision Boundary
论文作者
论文摘要
深度学习在大规模分类问题中取得了巨大的经验成功。相比之下,缺乏对深度学习方法的统计理解,尤其是在最小值的最佳视角中。例如,在经典的平滑决策边界设置中,现有的深神经网络(DNN)方法是速率 - 贝型的,并且如何构建最小值最佳DNN分类器仍然难以捉摸。此外,有趣的是探索DNN分类器是否可以在处理高维数据时规避维度的诅咒。本文的贡献是两个方面。首先,基于局部边距框架,我们发现了现有DNN方法的次优源。在此激励的情况下,我们提出了一个使用划分和诱使技术的新的深度学习分类器:在每个局部区域上构建DNN分类器,然后汇总到全球。我们进一步提出了经典Tsybakov的局部噪声条件的本地化版本,根据该条件,我们建立了新分类器的统计最佳性。其次,我们表明,DNN分类器可以适应低维数据结构并规避维度的诅咒,因为Minimax速率仅取决于有效维度,这可能比实际数据维度小得多。在模拟数据上进行了数值实验,以证实我们的理论结果。
Deep learning has gained huge empirical successes in large-scale classification problems. In contrast, there is a lack of statistical understanding about deep learning methods, particularly in the minimax optimality perspective. For instance, in the classical smooth decision boundary setting, existing deep neural network (DNN) approaches are rate-suboptimal, and it remains elusive how to construct minimax optimal DNN classifiers. Moreover, it is interesting to explore whether DNN classifiers can circumvent the curse of dimensionality in handling high-dimensional data. The contributions of this paper are two-fold. First, based on a localized margin framework, we discover the source of suboptimality of existing DNN approaches. Motivated by this, we propose a new deep learning classifier using a divide-and-conquer technique: DNN classifiers are constructed on each local region and then aggregated to a global one. We further propose a localized version of the classical Tsybakov's noise condition, under which statistical optimality of our new classifier is established. Second, we show that DNN classifiers can adapt to low-dimensional data structures and circumvent the curse of dimensionality in the sense that the minimax rate only depends on the effective dimension, potentially much smaller than the actual data dimension. Numerical experiments are conducted on simulated data to corroborate our theoretical results.