论文标题
延长$ F(R,G,T)$ GRAVITY中的一些特定的虫洞解决方案
Some Specific Wormhole Solutions in Extended $f(R,G,T)$ Gravity
论文作者
论文摘要
这项研究工作对不同耦合虫洞(WH)几何形状的生存能力进行了详尽的研究,并在$ f(r,g,t)$扩展重力框架中具有相对论物质配置。为此,我们在$ f(r,g,t)$ - 重力的上下文中考虑了一个特定模型。此外,我们假设静态的球形时空几何形状和具有一组形状函数($β(r)$)的物质分布,用于分析不同的能量条件(ECS)。除此之外,我们通过使用各向异性液在平衡情况下检查了WH模型。使用数值方法获得相应的结果,然后使用不同的图提出。在这种情况下,$ f(r,g,t)$重力会产生额外的曲率量,可以将其视为维持不规则WH速度的重力对象。根据我们的发现,我们得出的结论是,在没有外来物质的情况下,使用改良的重力模型在参数空间的某些特定区域中可以存在WH,例如$ f(r,g,t)= r+αr^2+βg^n+γg\ ln(g)+λt$。
This research work provides an exhaustive investigation of the viability of different coupled wormhole (WH) geometries with the relativistic matter configurations in the $f(R,G,T)$ extended gravity framework. We consider a specific model in the context of $f(R,G,T)$-gravity for this purpose. Also, we assume a static spherically symmetric space-time geometry and a unique distribution of matter with a set of shape functions ($β(r)$) for analyzing different energy conditions (ECs). In addition to this, we examined WH-models in the equilibrium scenario by employing anisotropic fluid. The corresponding results are obtained using numerical methods and then presented using different plots. In this case, $f(R,G,T)$ gravity generates additional curvature quantities, which can be thought of as gravitational objects that maintain irregular WH-situations. Based on our findings, we conclude that in the absence of exotic matter, WH can exist in some specific regions of the parametric space using modified gravity model as, $f(R,G,T) = R +αR^2+βG^n+γG\ln(G)+λT$.