论文标题
光谱序列的同喻理论
Homotopy theory of spectral sequences
论文作者
论文摘要
令$ r $为单位的交换戒指。我们考虑了$ r $模型的光谱序列类别的同质理论,这些序列的弱等价类别由那些形态学给出的弱等效性,在某个固定页面上诱导了准同态。我们表明,这是在棕色意义上,尤其是带有纤毛物体的部分棕色类别的结构的结构接近的结构。我们使用它与多重复合物和过滤络合物类别的相关结构进行比较。
Let $R$ be a commutative ring with unit. We consider the homotopy theory of the category of spectral sequences of $R$-modules with the class of weak equivalences given by those morphisms inducing a quasi-isomorphism at a certain fixed page. We show that this admits a structure close to that of a category of fibrant objects in the sense of Brown and in particular the structure of a partial Brown category with fibrant objects. We use this to compare with related structures on the categories of multicomplexes and filtered complexes.