论文标题

使用变压器的多标签视网膜疾病分类

Multi-Label Retinal Disease Classification using Transformers

论文作者

Rodriguez, M. A., AlMarzouqi, H., Liatsis, P.

论文摘要

早期发现视网膜疾病是预防患者部分或永久失明的最重要手段之一。在这项研究中,提出了一种新型的多标签分类系统,用于使用从各种来源收集的眼底图像来检测多种视网膜疾病。首先,使用许多可公开可用的数据集来构建一个新的多标签视网膜疾病数据集,即梅里特数据集。接下来,应用一系列后处理步骤,以确保图像数据的质量和数据集中存在的疾病范围。在底眼多标签疾病分类中,首次通过大量实验优化的基于变压器的模型用于图像分析和决策。进行了许多实验以优化所提出的系统的配置。结果表明,在疾病检测和疾病分类方面,该方法的性能比在同一任务上的最先进工作要好7.9%和8.1%。获得的结果进一步支持了基于变压器的架构在医学成像领域的潜在应用。

Early detection of retinal diseases is one of the most important means of preventing partial or permanent blindness in patients. In this research, a novel multi-label classification system is proposed for the detection of multiple retinal diseases, using fundus images collected from a variety of sources. First, a new multi-label retinal disease dataset, the MuReD dataset, is constructed, using a number of publicly available datasets for fundus disease classification. Next, a sequence of post-processing steps is applied to ensure the quality of the image data and the range of diseases, present in the dataset. For the first time in fundus multi-label disease classification, a transformer-based model optimized through extensive experimentation is used for image analysis and decision making. Numerous experiments are performed to optimize the configuration of the proposed system. It is shown that the approach performs better than state-of-the-art works on the same task by 7.9% and 8.1% in terms of AUC score for disease detection and disease classification, respectively. The obtained results further support the potential applications of transformer-based architectures in the medical imaging field.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源