论文标题

AutoSpeed:用于医疗超声检查的脉冲回声速度成像的链接自动编码器方法

AutoSpeed: A Linked Autoencoder Approach for Pulse-Echo Speed-of-Sound Imaging for Medical Ultrasound

论文作者

Jush, Farnaz Khun, Biele, Markus, Dueppenbecker, Peter M., Maier, Andreas

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Quantitative ultrasound, e.g., speed-of-sound (SoS) in tissues, provides information about tissue properties that have diagnostic value. Recent studies showed the possibility of extracting SoS information from pulse-echo ultrasound raw data (a.k.a. RF data) using deep neural networks that are fully trained on simulated data. These methods take sensor domain data, i.e., RF data, as input and train a network in an end-to-end fashion to learn the implicit mapping between the RF data domain and SoS domain. However, such networks are prone to overfitting to simulated data which results in poor performance and instability when tested on measured data. We propose a novel method for SoS mapping employing learned representations from two linked autoencoders. We test our approach on simulated and measured data acquired from human breast mimicking phantoms. We show that SoS mapping is possible using linked autoencoders. The proposed method has a Mean Absolute Percentage Error (MAPE) of 2.39% on the simulated data. On the measured data, the predictions of the proposed method are close to the expected values with MAPE of 1.1%. Compared to an end-to-end trained network, the proposed method shows higher stability and reproducibility.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源