论文标题
真正的希尔伯特空间中的正图和纠缠
Positive maps and entanglement in real Hilbert spaces
论文作者
论文摘要
积极地图的理论在运算符代数和功能分析中起着核心作用,并且在量子信息科学中具有无数的应用。该理论最初是为在复杂的希尔伯特空间上作用的运营商开发的,对其在实际希尔伯特空间上的变体知之甚少。在本文中,我们研究了作用于真实矩阵代数的正面地图,指出了复杂案例的许多根本差异,并讨论了它们在量子信息中的影响。 我们为真实地图提供了必要和充分的条件,可以接收正络合,并将正面地图与非阳性络合的存在联系起来与存在在实际希尔伯特空间量子力学中纠缠的混合状态的存在,但在复杂的版本中可分开,提供了地图和状态的明确示例。最后,我们讨论了纠缠折断和PPT地图,我们表明,即使在维度2中,PPT平方的猜想的直接真实版本也是错误的。但是,我们表明,原始的PPT-squared猜想暗示了真实地图的不同猜想,PPT属性由ppt属性替换为ppt ppt属性的较强属性,由较强的不属于partibleance partials partials transial transigial transipsips(ipt)(我ipt)。假设IPT属性时,我们证明了猜想的渐近版本。
The theory of positive maps plays a central role in operator algebras and functional analysis, and has countless applications in quantum information science. The theory was originally developed for operators acting on complex Hilbert spaces, and little is known about its variant on real Hilbert spaces. In this article we study positive maps acting on a full matrix algebra over the reals, pointing out a number of fundamental differences with the complex case and discussing their implications in quantum information. We provide a necessary and sufficient condition for a real map to admit a positive complexification, and connect the existence of positive maps with non-positive complexification with the existence of mixed states that are entangled in real Hilbert space quantum mechanics, but separable in the complex version, providing explicit examples both for the maps and for the states. Finally, we discuss entanglement breaking and PPT maps, and we show that a straightforward real version of the PPT-squared conjecture is false even in dimension 2. Nevertheless, we show that the original PPT-squared conjecture implies a different conjecture for real maps, in which the PPT property is replaced by a stronger property of invariance under partial transposition (IPT). When the IPT property is assumed, we prove an asymptotic version of the conjecture.