论文标题

YOLOV7:可训练的释放袋为实时对象探测器设置了新的最新最先进

YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors

论文作者

Wang, Chien-Yao, Bochkovskiy, Alexey, Liao, Hong-Yuan Mark

论文摘要

Yolov7在5 fps到160 fps的速度和精度上都超过了所有已知对象探测器,并且在所有已知的实时对象探测器中,GPU V100上的所有已知实时对象探测器的精度最高为56.8%AP。 YOLOV7-E6对象检测器(56 fps v100,55.9%AP)优于两个基于变压器的检测器SWIN-L-l-CASCADE掩膜R-CNN(9.2 fps a100,53.9%AP)的速度为509%,准确性为2%,基于基于探测器Convental contnext-contnext-xl cascade cascade cascade cascade cans r-cnn(8.6 fps r-cnn(8.6 fps r-cn)速度和0.7%AP的准确性以及Yolov7的表现均优于:Yolor,Yolox,Scaled-Yolov4,Yolov5,Yolov5,detr,Detr,可变形的DETR,DINO-5Scale-R50,VIT-ADAPTER-B和许多其他速度和准确性的其他对象探测器。此外,我们仅在不使用任何其他数据集或预先训练的权重的情况下,仅在MS Coco数据集上训练Yolov7。源代码在https://github.com/wongkinyiu/yolov7中发布。

YOLOv7 surpasses all known object detectors in both speed and accuracy in the range from 5 FPS to 160 FPS and has the highest accuracy 56.8% AP among all known real-time object detectors with 30 FPS or higher on GPU V100. YOLOv7-E6 object detector (56 FPS V100, 55.9% AP) outperforms both transformer-based detector SWIN-L Cascade-Mask R-CNN (9.2 FPS A100, 53.9% AP) by 509% in speed and 2% in accuracy, and convolutional-based detector ConvNeXt-XL Cascade-Mask R-CNN (8.6 FPS A100, 55.2% AP) by 551% in speed and 0.7% AP in accuracy, as well as YOLOv7 outperforms: YOLOR, YOLOX, Scaled-YOLOv4, YOLOv5, DETR, Deformable DETR, DINO-5scale-R50, ViT-Adapter-B and many other object detectors in speed and accuracy. Moreover, we train YOLOv7 only on MS COCO dataset from scratch without using any other datasets or pre-trained weights. Source code is released in https://github.com/WongKinYiu/yolov7.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源