论文标题

组织病理学数据集:合成大分辨率组织病理学数据集

Histopathology DatasetGAN: Synthesizing Large-Resolution Histopathology Datasets

论文作者

Rizvi, S. A., Cicalese, P., Seshan, S. V., Sciascia, S., Becker, J. U., Nguyen, H. V.

论文摘要

自我监督的学习(SSL)方法正在实现越来越多的深度学习模型,可以在难以获得标签的域中的图像数据集中训练。但是,这些方法努力扩展到医学成像数据集的高分辨率,在这种情况下,它们对于在标签降低医学图像数据集上实现良好的概括至关重要。在这项工作中,我们提出了组织病理学数据集体(HDGAN)框架,这是图像生成和分割的数据集团半监督框架的扩展,该框架可以很好地扩展到大分辨率的组织病理学图像。我们从原始框架中进行了一些改编,包括更新生成骨干,从发电机中选择性提取潜在功能,并切换到内存映射的数组。这些变化减少了框架的记忆消耗,改善了其对医学成像域的适用性。我们在血栓形成微型病变高分辨率瓷砖数据集上评估了HDGAN,这表明高分辨率的图像保管生成任务的性能很强。我们希望这项工作能够在医学成像域中更多地探索对医学成像域中的自我监管框架的更多探索,从而使更多深度学习模型在医学数据集中进行更多应用。

Self-supervised learning (SSL) methods are enabling an increasing number of deep learning models to be trained on image datasets in domains where labels are difficult to obtain. These methods, however, struggle to scale to the high resolution of medical imaging datasets, where they are critical for achieving good generalization on label-scarce medical image datasets. In this work, we propose the Histopathology DatasetGAN (HDGAN) framework, an extension of the DatasetGAN semi-supervised framework for image generation and segmentation that scales well to large-resolution histopathology images. We make several adaptations from the original framework, including updating the generative backbone, selectively extracting latent features from the generator, and switching to memory-mapped arrays. These changes reduce the memory consumption of the framework, improving its applicability to medical imaging domains. We evaluate HDGAN on a thrombotic microangiopathy high-resolution tile dataset, demonstrating strong performance on the high-resolution image-annotation generation task. We hope that this work enables more application of deep learning models to medical datasets, in addition to encouraging more exploration of self-supervised frameworks within the medical imaging domain.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源