论文标题

简单的界限具有最佳的精度,即改良的贝塞尔功能的比率

Simple bounds with best possible accuracy for ratios of modified Bessel functions

论文作者

Segura, J.

论文摘要

表格$ b(α,β,γ,x)的最佳界限=(α+\ sqrt {β^2+γ^2+γ^2 x^2})/x $用于修改的贝塞尔功能的比率:如果$α$,$β$和$γ$的$ b(yis a a a a a yimα,α,ac),x $ bessel函数的比例: $φ_ν(x)= i_ {ν-1}(x)/i_ν(x)$ as $ x \ rightarrow 0^ +$(分别$ x \ rightarrow +\ iffty $),函数$ b(α,β,β,γ,x,x)$ b(x,x)$ b(x(x)$ $ b(α,β,γ,x)$是任何正$ x $的$φ_ν(x)$的上部(分别较低),并且在$ x _*$时是最好的。比率$φ_ν(x)= k_ {ν+1}(x)/k_ν(x)$也是如此,但互换下限和上限(并且限制范围更大,$ν$)。在$ 0^+$和$+\ undty $的最大精度的界限中被恢复为$ x _*\ rightarrow 0^+$和$ x _*\ rightArrow+\ rightarrow+\ infty $,并且在这些情况下,系数具有简单的表达式。对于有限和正面$ x _*$的情况,我们提供了一个界限的界限家庭,这些家庭接近最佳界限并保留其汇合属性。

The best bounds of the form $B(α,β,γ,x)=(α+\sqrt{β^2+γ^2 x^2})/x$ for ratios of modified Bessel functions are characterized: if $α$, $β$ and $γ$ are chosen in such a way that $B(α,β,γ,x)$ is a sharp approximation for $Φ_ν(x)=I_{ν-1} (x)/I_ν(x)$ as $x\rightarrow 0^+$ (respectively $x\rightarrow +\infty$) and the graphs of the functions $B(α,β,γ,x)$ and $Φ_ν(x)$ are tangent at some $x=x_*>0$, then $B(α,β,γ,x)$ is an upper (respectively lower) bound for $Φ_ν(x)$ for any positive $x$, and it is the best possible at $x_*$. The same is true for the ratio $Φ_ν(x)=K_{ν+1} (x)/K_ν(x)$ but interchanging lower and upper bounds (and with a slightly more restricted range for $ν$). Bounds with maximal accuracy at $0^+$ and $+\infty$ are recovered in the limits $x_*\rightarrow 0^+$ and $x_*\rightarrow +\infty$, and for these cases the coefficients have simple expressions. For the case of finite and positive $x_*$ we provide uniparametric families of bounds which are close to the optimal bounds and retain their confluence properties.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源