论文标题
Rovar:通过视觉和RF传感器融合中的双层多样性进行鲁棒的多代理跟踪
RoVaR: Robust Multi-agent Tracking through Dual-layer Diversity in Visual and RF Sensor Fusion
论文作者
论文摘要
我们的商品设备中的大量传感器为传感器融合的跟踪提供了丰富的基板。然而,当今的解决方案无法在实用的日常环境中提供多个代理商的强大和高跟踪精度,这是沉浸式和协作应用程序未来的核心。这可以归因于这些融合解决方案利用多样性的有限范围,从而阻止它们迎合准确性,鲁棒性(不同的环境条件)和可伸缩性(多个试剂)的多个维度。在这项工作中,我们通过将双层多样性的概念引入多代理跟踪中的传感器融合问题来朝着这一目标迈出重要的一步。我们证明,互补跟踪模式的融合,被动/相对(例如,视觉验光仪)和主动/绝对跟踪(例如,基础架构辅助的RF定位)的融合提供了多样性的关键第一层,它提供了可伸缩性的一层,而第二层的多样性则在于我们融合了融合的方法,并且构成了Algorith的互补性强度,并且是Algorith的强度。精度)方法。 Rovar是这种双层多样性方法的实施例,使用算法和数据驱动的技术智能地参与了跨模式信息,共同承担着准确跟踪野外多种代理的负担。广泛的评估揭示了Rovar在跟踪准确性(中位数),鲁棒性(在看不见的环境中),轻重量(在移动平台上实时运行,例如Jetson Nano/tx2),例如在日常环境中实现实用的多代理应用。
The plethora of sensors in our commodity devices provides a rich substrate for sensor-fused tracking. Yet, today's solutions are unable to deliver robust and high tracking accuracies across multiple agents in practical, everyday environments - a feature central to the future of immersive and collaborative applications. This can be attributed to the limited scope of diversity leveraged by these fusion solutions, preventing them from catering to the multiple dimensions of accuracy, robustness (diverse environmental conditions) and scalability (multiple agents) simultaneously. In this work, we take an important step towards this goal by introducing the notion of dual-layer diversity to the problem of sensor fusion in multi-agent tracking. We demonstrate that the fusion of complementary tracking modalities, - passive/relative (e.g., visual odometry) and active/absolute tracking (e.g., infrastructure-assisted RF localization) offer a key first layer of diversity that brings scalability while the second layer of diversity lies in the methodology of fusion, where we bring together the complementary strengths of algorithmic (for robustness) and data-driven (for accuracy) approaches. RoVaR is an embodiment of such a dual-layer diversity approach that intelligently attends to cross-modal information using algorithmic and data-driven techniques that jointly share the burden of accurately tracking multiple agents in the wild. Extensive evaluations reveal RoVaR's multi-dimensional benefits in terms of tracking accuracy (median of 15cm), robustness (in unseen environments), light weight (runs in real-time on mobile platforms such as Jetson Nano/TX2), to enable practical multi-agent immersive applications in everyday environments.