论文标题
单一轨道的私人矩阵近似和几何形状
Private Matrix Approximation and Geometry of Unitary Orbits
论文作者
论文摘要
考虑以下优化问题:给定$ n \ times n $矩阵$ a $ a $和$λ$,最大化$ \ langle a,uλu^*\ rangle $,其中$ u $在unity group $ \ mathrm {u}(u}(n)$中都会有所不同。这个问题试图通过矩阵大约$ a $,其频谱与$λ$相同,并且通过将$λ$设置为适当的对角矩阵,可以恢复矩阵近似问题,例如pca和rank $ k $近似。我们研究了在使用用户的私人数据构建矩阵$ a $的设置中,为这种优化问题设计差异性私有算法的问题。我们给出了近似误差上的上限和下限的有效和私人算法。我们的结果统一并改进了有关私人矩阵近似问题的几项先前的作品。他们依靠格拉斯曼尼亚人的包装/覆盖数量范围扩展到应该具有独立利益的单一轨道。
Consider the following optimization problem: Given $n \times n$ matrices $A$ and $Λ$, maximize $\langle A, UΛU^*\rangle$ where $U$ varies over the unitary group $\mathrm{U}(n)$. This problem seeks to approximate $A$ by a matrix whose spectrum is the same as $Λ$ and, by setting $Λ$ to be appropriate diagonal matrices, one can recover matrix approximation problems such as PCA and rank-$k$ approximation. We study the problem of designing differentially private algorithms for this optimization problem in settings where the matrix $A$ is constructed using users' private data. We give efficient and private algorithms that come with upper and lower bounds on the approximation error. Our results unify and improve upon several prior works on private matrix approximation problems. They rely on extensions of packing/covering number bounds for Grassmannians to unitary orbits which should be of independent interest.