论文标题
搅拌太阳风的底部:在传热和涡流形成时
Stirring the Base of the Solar Wind: On Heat Transfer and Vortex Formation
论文作者
论文摘要
太阳风的当前模型必须近似(或忽略)太阳大气中的小规模动力学,但是这些模型对于塑造新兴的波动扰动谱并最终加热/加速冠状血浆可能很重要。 Bifrost代码产生了对太阳大气的逼真的模拟,该模拟有助于分析现代太阳能望远镜当前或以后的空间和时间尺度。在这项研究中,将双佛罗斯特模拟配置为代表冠状孔区域中的太阳大气,从该区域出现了快速太阳风。该模拟从上流传流区(光球以下2.5毫米)延伸到低孔(在光球面14.5 mm),水平范围为24 mm x 24 mm。通过光晶流对冠状磁场的扭曲,有效地将能量注入了低调。通常在扭曲的磁性结构内观察到,直径为1-5毫米的扭曲磁性结构,通常会观察到高达$ 2-4 $ kwm $^{ - 2} $的通量。扭转的Alfvén波沿这些结构有利传播,随后将逃入太阳风中。但是,这些波从上边界条件中反射的反射使得很难明确地量化新兴的alfvén波动能量。这项研究代表了使用Bifrost模拟量化太阳风底部条件的第一步。结果表明,冠状磁场很容易被光球流构造和扭曲。温度和密度的对比是有主动搅拌运动与没有的区域之间形成的。在对流中,更强大的旋风状流动与磁浓度同时发生,通过磁漏斗网络发射扭转的Alfvén波,预计这将增强太阳风中的磁磁换回。
Current models of the solar wind must approximate (or ignore) the small-scale dynamics within the solar atmosphere, however these are likely important in shaping the emerging wave-turbulence spectrum and ultimately heating/accelerating the coronal plasma. The Bifrost code produces realistic simulations of the solar atmosphere that facilitate the analysis of spatial and temporal scales which are currently at, or beyond, the limit of modern solar telescopes. For this study, the Bifrost simulation is configured to represent the solar atmosphere in a coronal hole region, from which the fast solar wind emerges. The simulation extends from the upper-convection zone (2.5 Mm below the photosphere) to the low-corona (14.5 Mm above the photosphere), with a horizontal extent of 24 Mm x 24 Mm. The twisting of the coronal magnetic field by photospheric flows, efficiently injects energy into the low-corona. Poynting fluxes of up to $2-4$ kWm$^{-2}$ are commonly observed inside twisted magnetic structures with diameters in the low-corona of 1 - 5 Mm. Torsional Alfvén waves are favourably transmitted along these structures, and will subsequently escape into the solar wind. However, reflections of these waves from the upper boundary condition make it difficult to unambiguously quantify the emerging Alfvén wave-energy flux. This study represents a first step in quantifying the conditions at the base of the solar wind using Bifrost simulations. It is shown that the coronal magnetic field is readily braided and twisted by photospheric flows. Temperature and density contrasts form between regions with active stirring motions and those without. Stronger whirlpool-like flows in the convection, concurrent with magnetic concentrations, launch torsional Alfvén waves up through the magnetic funnel network, which are expected to enhance the turbulent generation of magnetic switchbacks in the solar wind.