论文标题

通过进行分子动力学模拟,机器学习辅助研究氢在盐水中的扩散

Machine-Learning-Assisted Investigation of the Diffusion of Hydrogen in Brine by Performing Molecular Dynamics Simulation

论文作者

Bhimineni, Sree Harsha, Zhou, Tianhang, Mahmoodpour, Saeed, Singh, Mrityunjay, Li, Wei, Bag, Saientan, Sass, Ingo, Müller-Plathe, Florian

论文摘要

深盐水含水层是大规模和长期氢存储的最佳选择之一。预测在盐水含水层条件下氢分子的扩散系数对于对氢储存建模至关重要。氢分子在氯化物盐水中的扩散系数具有不同的阳离子($ \ MATHRM {Na}^+$,$ \ MATHRM {K}^+$,$ \ MATHRM {Ca}^{2+} $,最多包含5 $ \ MATHRM {mol/kgg_} (MD)模拟。施加了广泛的压力(1-218 atm)和温度(298-648 K)条件,以覆盖含水层的现实操作条件。我们发现离子的温度,压力和特性(组成和浓度)会影响氢扩散系数。在恒定压力下使用离子浓度拟合的温度无关参数已经观察到了温度对扩散系数的影响的ARRHENIUS行为。但是,注意到,压力强烈影响高温($ \ geq $ 400 K)制度的氢的扩散行为,表明Arrhenius模型的不准确性。因此,我们将获得的MD结果与四种机器学习模型(ML)结合在一起,包括线性回归(LR),随机森林(RF),Extra Tree(ET)和梯度增强(GB),以提供有关氢扩散的有效预测。与Arrhenius模型和其他ML模型相比,GB模型与MD数据的最终组合可以更有效地预测氢的扩散。此外,已经执行了$ hoc hoc $分析(功能重要性等级),以提取物理描述符和ML模型中的仿真结果之间的相关性。

Deep saline aquifers are one of the best options for large-scale and long-term hydrogen storage. Predicting the diffusion coefficient of hydrogen molecules at the conditions of saline aquifers is critical for modelling hydrogen storage. The diffusion coefficient of hydrogen molecules in chloride brine with different cations ($\mathrm{Na}^+$, $\mathrm{K}^+$, $\mathrm{Ca}^{2+}$) containing up to 5 $\mathrm{mol/kg_{H_2O}}$ concentration is numerically investigated using molecular dynamics (MD) simulation. A wide range of pressure (1-218 atm) and temperature (298-648 K) conditions is applied to cover the realistic operational conditions of the aquifers. We find that the temperature, pressure and properties of ions (compositions and concentrations) affect the hydrogen diffusion coefficient. An Arrhenius behavior of the effect of temperature on the diffusion coefficient has been observed with the temperature independent parameters fitted using the ion concentration under constant pressure. However, it is noted that the pressure strongly affects the diffusive behavior of hydrogen at the high temperature ($\geq$ 400 K) regime, indicating the inaccuracy of the Arrhenius model. Hence, we combine the obtained MD results with four models of machine learning (ML), including linear regression (LR), random forest (RF), extra tree (ET) and gradient boosting (GB) to provide effective predictions on the hydrogen diffusion. The resultant combination of GB model with MD data predicts the diffusion of hydrogen more effectively as compared to the Arrhenius model and other ML models. Moreover, a $post hoc$ analysis (feature importance rank) has been performed to extract the correlation between physical descriptors and simulation results from ML models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源