论文标题
通过利用层次结构的泡沫中的尺寸效应和多尺度相互作用来利用卓越的机械性能
Superior mechanical properties by exploiting size-effects and multiscale interactions in hierarchically architected foams
论文作者
论文摘要
极端环境中的保护性应用需要轻巧的模量,强度和特定能量吸收(SEA)的热稳定材料。但是,这些属性通常具有权衡。层次结构的材料(例如固定的验证碳纳米管(VACNT)泡沫),以克服这些权衡以实现机械性能的协同增强的潜力。在这里,我们采用了实验方法(DOE)方法的全因设计,以优化多层设计参数,以实现具有中尺度圆柱形结构的VACNT泡沫的海洋,强度和模量的协同增强。我们利用了几何限制的合成和CNT的高度互动形态的尺寸效应,以实现高阶设计参数相互作用,这些相互作用令人着迷地破坏直径到厚度(d/t)依赖性缩放尺度,在常见的管状架构材料中发现。我们表明,在构建材料设计中利用互补的层次结构机制可以导致机械性能的前所未有的协同增强,并且对于极端保护应用所需的性能。
Protective applications in extreme environments demand thermally stable materials with superior modulus, strength, and specific energy absorption (SEA) at lightweight. However, these properties typically have a trade-off. Hierarchically architected materials--such as the architected vertically aligned carbon nanotube (VACNT) foams--offer the potential to overcome these trade-offs to achieve synergistic enhancement in mechanical properties. Here, we adopt a full-factorial design of experiments (DOE) approach to optimize multitier design parameters to achieve synergistic enhancement in SEA, strength, and modulus at lightweight in VACNT foams with mesoscale cylindrical architecture. We exploit the size effects from geometrically-confined synthesis and the highly interactive morphology of CNTs to enable higher-order design parameter interactions that intriguingly break the diameter-to-thickness (D/t)-dependent scaling laws found in common tubular architected materials. We show that exploiting complementary hierarchical mechanisms in architected material design can lead to unprecedented synergistic enhancement of mechanical properties and performance desirable for extreme protective applications.