论文标题

单个$ t $ - 盖特使分销艰苦学习

A single $T$-gate makes distribution learning hard

论文作者

Hinsche, Marcel, Ioannou, Marios, Nietner, Alexander, Haferkamp, Jonas, Quek, Yihui, Hangleiter, Dominik, Seifert, Jean-Pierre, Eisert, Jens, Sweke, Ryan

论文摘要

从样本中学习概率分布的任务在整个自然科学中都是普遍存在的。局部量子电路的输出分布构成了一类特别有趣的分布类别,对量子优势提案和各种量子机学习算法都具有关键的重要性。在这项工作中,我们提供了局部量子电路输出分布的可学习性的广泛表征。我们的第一个结果可以深入了解这些分布的有效学习性与有效的可模拟性之间的关系。具体来说,我们证明与Clifford电路相关的密度建模问题可以有效地解决,而对于深度,$ d = n^{ω(1)} $电路将单个$ t $ gate注入到电路中,这使该问题很难。该结果表明,有效的模拟性并不意味着有效的可学习性。我们的第二组结果提供了对量子生成建模算法的潜在和局限性的见解。我们首先表明,与深度$ d = n^{ω(1)} $局部量子电路相关的生成建模问题对于任何学习算法,经典或量子都很难。结果,一个人不能使用量子算法来为此任务获得实际优势。然后,我们表明,对于各种最实际相关的学习算法(包括混合量词古典算法),即使是与深度$ d =ω(\ log(n))$ Clifford Circutits相关的生成建模问题也很难。此结果对近期杂种量子古典生成建模算法的适用性造成了限制。

The task of learning a probability distribution from samples is ubiquitous across the natural sciences. The output distributions of local quantum circuits form a particularly interesting class of distributions, of key importance both to quantum advantage proposals and a variety of quantum machine learning algorithms. In this work, we provide an extensive characterization of the learnability of the output distributions of local quantum circuits. Our first result yields insight into the relationship between the efficient learnability and the efficient simulatability of these distributions. Specifically, we prove that the density modelling problem associated with Clifford circuits can be efficiently solved, while for depth $d=n^{Ω(1)}$ circuits the injection of a single $T$-gate into the circuit renders this problem hard. This result shows that efficient simulatability does not imply efficient learnability. Our second set of results provides insight into the potential and limitations of quantum generative modelling algorithms. We first show that the generative modelling problem associated with depth $d=n^{Ω(1)}$ local quantum circuits is hard for any learning algorithm, classical or quantum. As a consequence, one cannot use a quantum algorithm to gain a practical advantage for this task. We then show that, for a wide variety of the most practically relevant learning algorithms -- including hybrid-quantum classical algorithms -- even the generative modelling problem associated with depth $d=ω(\log(n))$ Clifford circuits is hard. This result places limitations on the applicability of near-term hybrid quantum-classical generative modelling algorithms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源