论文标题
汽车雷达对象检测网络的自我监督速度估计
Self-Supervised Velocity Estimation for Automotive Radar Object Detection Networks
论文作者
论文摘要
本文提出了一种使用对象检测网络在汽车雷达数据上学习对象的笛卡尔速度的方法。提出的方法是在为速度生成自己的训练信号方面进行的。标签仅用于单帧,定向边界框(OBB)。不需要昂贵的笛卡尔速度或连续序列的标签。一般的想法是在没有速度的情况下使用单帧OBB标签预先培训对象检测网络,然后利用网络对未标记数据的OBB预测进行速度训练。详细说明,使用预测的速度和未标记框架的更新OBB之间的距离和标记框架的OBB预测之间的距离,将网络对未标记帧的OBB预测更新为标记帧的时间戳,用于生成速度的自助训练信号。检测网络体系结构由一个模块扩展,以说明多次扫描的时间关系和一个模块,以明确表示雷达的径向速度测量值。仅第一次训练的两步方法使用OBB检测,然后使用训练OBB检测和速度。此外,由雷达径向速度测量产生的伪标记的预训练引导Bootstraps本文的自我监督方法。公开可用的Nuscenes数据集进行的实验表明,所提出的方法几乎达到了完全监督的培训的速度估计性能,但不需要昂贵的速度标签。此外,我们优于基线方法,该方法仅使用径向速度测量作为标签。
This paper presents a method to learn the Cartesian velocity of objects using an object detection network on automotive radar data. The proposed method is self-supervised in terms of generating its own training signal for the velocities. Labels are only required for single-frame, oriented bounding boxes (OBBs). Labels for the Cartesian velocities or contiguous sequences, which are expensive to obtain, are not required. The general idea is to pre-train an object detection network without velocities using single-frame OBB labels, and then exploit the network's OBB predictions on unlabelled data for velocity training. In detail, the network's OBB predictions of the unlabelled frames are updated to the timestamp of a labelled frame using the predicted velocities and the distances between the updated OBBs of the unlabelled frame and the OBB predictions of the labelled frame are used to generate a self-supervised training signal for the velocities. The detection network architecture is extended by a module to account for the temporal relation of multiple scans and a module to represent the radars' radial velocity measurements explicitly. A two-step approach of first training only OBB detection, followed by training OBB detection and velocities is used. Further, a pre-training with pseudo-labels generated from radar radial velocity measurements bootstraps the self-supervised method of this paper. Experiments on the publicly available nuScenes dataset show that the proposed method almost reaches the velocity estimation performance of a fully supervised training, but does not require expensive velocity labels. Furthermore, we outperform a baseline method which uses only radial velocity measurements as labels.