论文标题

MCT具有精炼的建议,用于选择场景中的选择游戏

MCTS with Refinement for Proposals Selection Games in Scene Understanding

论文作者

Stekovic, Sinisa, Rad, Mahdi, Moradi, Alireza, Fraundorfer, Friedrich, Lepetit, Vincent

论文摘要

我们提出了一种适用于许多场景中的新方法,理解了适应蒙特卡洛树搜索(MCTS)算法的问题,该算法最初旨在学习玩高州复杂性的游戏。从生成的建议池中,我们的方法共同选择并优化了最小化目标项的建议。在我们的第一个从点云中进行平面计划重建的应用程序中,我们的方法通过优化将深层网络预测的适应性组合到房间形状上的目标函数,选择并改进了以2D多边形为模型的房间建议。我们还引入了一种新型的可区分方法来渲染这些建议的多边形形状。我们对最近且具有挑战性的结构3D和Floor SP数据集的评估对最先进的表现有了显着改善,而没有对平面图配置施加硬性约束也没有假设。在第二个应用程序中,我们扩展了从颜色图像重建一般3D房间布局并获得准确的房间布局的方法。我们还表明,可以轻松扩展我们的可区分渲染器,以渲染3D平面多边形和多边形嵌入。我们的方法在MatterPort3D-Layout数据集上显示了高性能,而无需在房间布局配置上引入硬性约束。

We propose a novel method applicable in many scene understanding problems that adapts the Monte Carlo Tree Search (MCTS) algorithm, originally designed to learn to play games of high-state complexity. From a generated pool of proposals, our method jointly selects and optimizes proposals that minimize the objective term. In our first application for floor plan reconstruction from point clouds, our method selects and refines the room proposals, modelled as 2D polygons, by optimizing on an objective function combining the fitness as predicted by a deep network and regularizing terms on the room shapes. We also introduce a novel differentiable method for rendering the polygonal shapes of these proposals. Our evaluations on the recent and challenging Structured3D and Floor-SP datasets show significant improvements over the state-of-the-art, without imposing hard constraints nor assumptions on the floor plan configurations. In our second application, we extend our approach to reconstruct general 3D room layouts from a color image and obtain accurate room layouts. We also show that our differentiable renderer can easily be extended for rendering 3D planar polygons and polygon embeddings. Our method shows high performance on the Matterport3D-Layout dataset, without introducing hard constraints on room layout configurations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源