论文标题

BMD-GAN:使用X射线图像分解进行骨矿物质密度估算,用于使用分层学习的骨细分定量计算机断层扫描的投影

BMD-GAN: Bone mineral density estimation using x-ray image decomposition into projections of bone-segmented quantitative computed tomography using hierarchical learning

论文作者

Gu, Yi, Otake, Yoshito, Uemura, Keisuke, Soufi, Mazen, Takao, Masaki, Sugano, Nobuhiko, Sato, Yoshinobu

论文摘要

我们提出了一种从普通X射线图像估算骨矿物质密度(BMD)的方法。双能量X射线吸收法(DXA)和定量计算机断层扫描(QCT)在诊断骨质疏松症方面具有很高的精度;但是,这些方式需要特殊的设备和扫描协议。测量X射线图像的BMD提供了机会筛查,这对于早期诊断可能有用。以前直接了解X射线图像和BMD之间关系的方法需要大型训练数据集,以实现高精度,因为X射线图像中的强度很大。因此,我们提出了一种使用QCT训练生成对抗网络(GAN)的方法,并将X射线图像分解为骨分割QCT的投影。提出的分层学习提高了定量分解小区域目标的鲁棒性和准确性。使用该方法评估200例骨关节炎患者,我们将其命名为BMD-GAN,在预测和地面真实DXA测量的BMD之间显示了Pearson相关系数为0.888。除了不需要大规模的训练数据库外,我们方法的另一个优点是它的扩展性对其他解剖区域,例如椎骨和肋骨。

We propose a method for estimating the bone mineral density (BMD) from a plain x-ray image. Dual-energy X-ray absorptiometry (DXA) and quantitative computed tomography (QCT) provide high accuracy in diagnosing osteoporosis; however, these modalities require special equipment and scan protocols. Measuring BMD from an x-ray image provides an opportunistic screening, which is potentially useful for early diagnosis. The previous methods that directly learn the relationship between x-ray images and BMD require a large training dataset to achieve high accuracy because of large intensity variations in the x-ray images. Therefore, we propose an approach using the QCT for training a generative adversarial network (GAN) and decomposing an x-ray image into a projection of bone-segmented QCT. The proposed hierarchical learning improved the robustness and accuracy of quantitatively decomposing a small-area target. The evaluation of 200 patients with osteoarthritis using the proposed method, which we named BMD-GAN, demonstrated a Pearson correlation coefficient of 0.888 between the predicted and ground truth DXA-measured BMD. Besides not requiring a large-scale training database, another advantage of our method is its extensibility to other anatomical areas, such as the vertebrae and rib bones.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源