论文标题

在连续时间动态签名网络中学习

Representation Learning in Continuous-Time Dynamic Signed Networks

论文作者

Sharma, Kartik, Raghavendra, Mohit, Lee, Yeon Chang, M, Anand Kumar, Kumar, Srijan

论文摘要

签名的网络使我们能够建模相互冲突的关系和互动,例如朋友/敌人以及支持/反对。这些签名的互动实时发生。建模签名网络的这种动力学对于了解网络中极化的演变至关重要,并在将来对签名结构(即链接符号和签名权重)进行有效预测。但是,现有工作已经建模(静态)签名的网络或动态(无符号)网络,而不是动态签名的网络。由于符号和动力学都以不同的方式告知图形结构,因此建模如何结合两个特征是不平凡的。在这项工作中,我们提出了一个新的图形神经网络(GNN)的方法,用于模型动态签名网络,名为SEMBA:使用内存模块和平衡聚合的签名链接的演变。在这里,这个想法是使用以平衡理论为指导的单独模块合并时间相互作用的迹象,并从高阶邻居中进化嵌入。在4个现实世界数据集和4个不同任务上的实验表明,SEMBA始终如一地在预测未来链接的未来链接的迹象的任务上,在预测未来链接的情况下,预测未来链接的迹象的任务上,最多优于基准$ 80 \%$。我们发现,这种改进是特别是由于SEMBA在少数族裔否定阶层上的出色表现。

Signed networks allow us to model conflicting relationships and interactions, such as friend/enemy and support/oppose. These signed interactions happen in real-time. Modeling such dynamics of signed networks is crucial to understanding the evolution of polarization in the network and enabling effective prediction of the signed structure (i.e., link signs and signed weights) in the future. However, existing works have modeled either (static) signed networks or dynamic (unsigned) networks but not dynamic signed networks. Since both sign and dynamics inform the graph structure in different ways, it is non-trivial to model how to combine the two features. In this work, we propose a new Graph Neural Network (GNN)-based approach to model dynamic signed networks, named SEMBA: Signed link's Evolution using Memory modules and Balanced Aggregation. Here, the idea is to incorporate the signs of temporal interactions using separate modules guided by balance theory and to evolve the embeddings from a higher-order neighborhood. Experiments on 4 real-world datasets and 4 different tasks demonstrate that SEMBA consistently and significantly outperforms the baselines by up to $80\%$ on the tasks of predicting signs of future links while matching the state-of-the-art performance on predicting the existence of these links in the future. We find that this improvement is due specifically to the superior performance of SEMBA on the minority negative class.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源