论文标题

通过深度学习具有柔性设计目标的逆设计:从纳米球体的电气和磁多极散射的剪裁

Inverse design with flexible design targets via deep learning: Tailoring of electric and magnetic multipole scattering from nano-spheres

论文作者

Estrada-Real, Ana, Khaireh-Walieh, Abdourahman, Urbaszek, Bernhard, Wiecha, Peter R.

论文摘要

深度学习是一种有希望的,超快速的方法,用于纳米透视中的逆设计,但是尽管该领域的进步很快,数据集生成的计算成本以及培训程序本身仍然是主要的瓶颈。这尤其不便,因为需要生成新数据,并且需要培训新的网络以进行任何修改问题。我们提出了一种技术,该技术允许在无需重新训练的情况下训练一个广泛的设计目标上的单个神经网络。我们方法的关键思想是用随机的“感兴趣区域”(ROI)标签丰富现有数据。对此类ROI装饰数据进行培训的模型可以在广泛的物理目标上运行,同时它将其设计工作集中在用户定义的ROI上,而忽略了其余的物理域。我们通过训练有关在较大光谱范围内的电和磁性偶极子和四极杆散射的介电芯纳米球形设计的串联网络来证明该方法。该网络学会量身定制非常独特,灵活的设计目标,例如由于狭窄的光谱窗口中的特定多极端导致的散射。改变设计问题不需要任何重新训练。我们的方法非常通用,可以与现有数据集直接使用。它可以直接应用于其他网络架构和问题。

Deep learning is a promising, ultra-fast approach for inverse design in nano-optics, but despite fast advancement of the field, the computational cost of dataset generation, as well as of the training procedure itself remains a major bottleneck. This is particularly inconvenient because new data need to be generated and a new network needs to be trained for any modification of the problem. We propose a technique that allows to train a single neural network on a broad range of design targets without any re-training. The key idea of our method is to enrich existing data with random "regions of interest" (ROI) labels. A model trained on such ROI-decorated data becomes capable to operate on a broad range of physical targets, while it learns to focus its design effort on a user-defined ROI, ignoring the rest of the physical domain. We demonstrate the method by training a tandem-network on the design of dielectric core-shell nano-spheres for electric and magnetic dipole and quadrupole scattering over a broad spectral range. The network learns to tailor very distinct, flexible design targets like scattering due to specific multipoles in narrow spectral windows. Varying the design problem does not require any re-training. Our approach is very general and can be directly used with existing datasets. It can be straightforwardly applied to other network architectures and problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源