论文标题

质量,电容性功能和质量与容量比率

Mass, capacitary functions, and the mass-to-capacity ratio

论文作者

Miao, Pengzi

论文摘要

我们研究了ADM质量之间的连接,无穷大时趋于零的正谐波功能,以及具有非负标量曲率的渐近平坦$ 3 $ manifolds的边界的能力。 首先,我们提供了通过谐波函数检测ADM质量的新公式。然后,如果基础歧管具有简单的拓扑结构,我们将得出一个单调量和几何不平等的家族。作为立即应用,我们可以观察到$ 3 $维的Riemannian正质量定理的其他一些证据。一个证明会导致新的,充分的条件,这意味着通过$ c^0 $ - 分隔边界和$ \ infty $的区域几何形状对质量的积极性。这种充分条件的特殊情况表明,如果封闭边界的区域相对较小,则质量为正。 作为进一步的应用,我们获得了质量与容量比率不可或缺的身份。我们还促进了在旋转对称球以外的空间Schwarzschild歧管上成为平等的不平等。除其他外,我们显示质量与容量比的比率始终在下面由一个归一化Willmore功能的平方根界定。 在我们的发现的提示下,我们进行了一项研究,以满足质量与容量比率的限制。我们指出,这种歧管满足了不平等的改善,它们的质量仅取决于边界数据,没有封闭边界的封闭最小表面,这些歧管包括在Bartnik Quasi-leclocal-local质量的背景下的静态扩展。

We study connections among the ADM mass, positive harmonic functions tending to zero at infinity, and the capacity of the boundary of asymptotically flat $3$-manifolds with nonnegative scalar curvature. First we give new formulae that detect the ADM mass via harmonic functions. Then we derive a family of monotone quantities and geometric inequalities if the underlying manifold has simple topology. As an immediate application, we observe several additional proofs of the $3$-dimensional Riemannian positive mass theorem. One proof leads to new, sufficient conditions that imply positivity of the mass via $C^0$-geometry of regions separating the boundary and $\infty$. A special case of such sufficient conditions shows, if a region enclosing the boundary has relative small volume, then the mass is positive. As further applications, we obtain integral identities for the mass-to-capacity ratio. We also promote the inequalities to become equality on spatial Schwarzschild manifolds outside rotationally symmetric spheres. Among other things, we show the mass-to-capacity ratio is always bounded below by one minus the square root of the normalized Willmore functional of the boundary. Prompted by our findings, we carry out a study of manifolds satisfying a constraint on the mass-to-capacity ratio. We point out such manifolds satisfy improved inequalities, their mass has an upper bound depending only on the boundary data, there are no closed minimal surfaces enclosing the boundary, and these manifolds include static extensions in the context of the Bartnik quasi-local mass.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源