论文标题

RWT-SLAM:对高质量质地的环境的强大视觉大满贯

RWT-SLAM: Robust Visual SLAM for Highly Weak-textured Environments

论文作者

Peng, Qihao, Xiang, Zhiyu, Fan, YuanGang, Zhao, Tengqi, Zhao, Xijun

论文摘要

作为智能机器人的一项基本任务,Visual Slam在过去几十年中取得了长足的进步。但是,在高度弱质地的环境下,强大的大满贯仍然非常具有挑战性。在本文中,我们提出了一个名为RWT-Slam的新型视觉大满贯系统,以解决这个问题。我们修改LOFTR网络,该网络能够在低纹理的场景下产生密集的点匹配以生成特征描述符。为了将新功能集成到流行的Orb-Slam框架中,我们开发了功能面具,以滤除不可靠的功能并采用KNN策略来增强匹配的鲁棒性。我们还对新的描述符进行了视觉词汇,以进行有效的循环结束。在TUM和Openloris等各种公共数据集以及我们自己的数据中,对产生的RWT-SLAM进行了测试。结果表明,在高度弱质地的环境下表现非常有前途。

As a fundamental task for intelligent robots, visual SLAM has made great progress over the past decades. However, robust SLAM under highly weak-textured environments still remains very challenging. In this paper, we propose a novel visual SLAM system named RWT-SLAM to tackle this problem. We modify LoFTR network which is able to produce dense point matching under low-textured scenes to generate feature descriptors. To integrate the new features into the popular ORB-SLAM framework, we develop feature masks to filter out the unreliable features and employ KNN strategy to strengthen the matching robustness. We also retrained visual vocabulary upon new descriptors for efficient loop closing. The resulting RWT-SLAM is tested in various public datasets such as TUM and OpenLORIS, as well as our own data. The results shows very promising performance under highly weak-textured environments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源