论文标题

非参数估计潜在的影响分数和人口的分数,该分数与个人级别和汇总数据估计

Nonparametric Estimation of the Potential Impact Fraction and Population Attributable Fraction with Individual-Level and Aggregated Data

论文作者

Chan, Colleen E., Zepeda-Tello, Rodrigo, Camacho-García-Formentí, Dalia, Cudhea, Frederick, Meza, Rafael, Rodrigues, Eliane, Spiegelman, Donna, Barrientos-Gutierrez, Tonatiuh, Zhou, Xin

论文摘要

对潜在影响部分的估计(包括归因于归因的分数)与连续暴露数据的估计通常取决于强烈的分布假设。但是,如果基础暴露分布未知或在时间或空间跨空间假定相同的分布时,通常会违反这些假设。估计潜在影响分数的非参数方法可用于队列数据,但横截面数据没有其他选择。在本文中,我们讨论了分布假设对人口影响分数的估计的影响,表明在一组无限的可能性下,分布违规会导致估计有偏见。我们提出了非参数方法,以估算汇总(平均值和标准偏差)或单个数据(例如,横截面人群调查的观察结果)的潜在影响部分,并开发模拟场景以将其性能与标准参数程序进行比较。我们说明了我们在2型糖尿病发生率上添加糖饮料饮料消耗的方法。我们还提出了一个r软件包PIFPAF来实现这些方法。

The estimation of the potential impact fraction (including the population attributable fraction) with continuous exposure data frequently relies on strong distributional assumptions. However, these assumptions are often violated if the underlying exposure distribution is unknown or if the same distribution is assumed across time or space. Nonparametric methods to estimate the potential impact fraction are available for cohort data, but no alternatives exist for cross-sectional data. In this article, we discuss the impact of distributional assumptions in the estimation of the population impact fraction, showing that under an infinite set of possibilities, distributional violations lead to biased estimates. We propose nonparametric methods to estimate the potential impact fraction for aggregated (mean and standard deviation) or individual data (e.g. observations from a cross-sectional population survey), and develop simulation scenarios to compare their performance against standard parametric procedures. We illustrate our methodology on an application of sugar-sweetened beverage consumption on incidence of type 2 diabetes. We also present an R package pifpaf to implement these methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源