论文标题

有效的游戏理论计划,并预测符合社会兼容的自动驾驶的启发式启发式

Efficient Game-Theoretic Planning with Prediction Heuristic for Socially-Compliant Autonomous Driving

论文作者

Li, Chenran, Trinh, Tu, Wang, Letian, Liu, Changliu, Tomizuka, Masayoshi, Zhan, Wei

论文摘要

在与其他代理商的社交互动下进行计划是自动驾驶的重要问题。随着自动驾驶汽车在相互作用中的作用会影响,并且也受到其他代理的影响,因此自动驾驶汽车需要有效地推断其他药物的反应。大多数现有方法将问题提出为广义的NASH平衡问题,该问题通过基于优化的方法解决。但是,他们要求过多的计算资源,并且由于非凸度而容易落入本地最低限度。蒙特卡洛树搜索(MCTS)成功解决了游戏理论问题。但是,随着交互游戏树的成倍增长,一般的MCT仍然需要大量迭代才能达到Optima。在本文中,我们通过将预测算法作为启发式算法提出了一种基于一般MCT的高效游戏理论轨迹计划算法。最重要的是,符合社会的奖励和贝叶斯推论算法旨在产生多样化的驾驶行为并确定其他驾驶员的驾驶偏好。结果证明了在高度交互式场景中包含自然主义驾驶行为的数据集的提议框架的有效性。

Planning under social interactions with other agents is an essential problem for autonomous driving. As the actions of the autonomous vehicle in the interactions affect and are also affected by other agents, autonomous vehicles need to efficiently infer the reaction of the other agents. Most existing approaches formulate the problem as a generalized Nash equilibrium problem solved by optimization-based methods. However, they demand too much computational resource and easily fall into the local minimum due to the non-convexity. Monte Carlo Tree Search (MCTS) successfully tackles such issues in game-theoretic problems. However, as the interaction game tree grows exponentially, the general MCTS still requires a huge amount of iterations to reach the optima. In this paper, we introduce an efficient game-theoretic trajectory planning algorithm based on general MCTS by incorporating a prediction algorithm as a heuristic. On top of it, a social-compliant reward and a Bayesian inference algorithm are designed to generate diverse driving behaviors and identify the other driver's driving preference. Results demonstrate the effectiveness of the proposed framework with datasets containing naturalistic driving behavior in highly interactive scenarios.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源