论文标题
Riemannian歧管上半线性热方程的溶解度
Solvability of a semilinear heat equation on Riemannian manifolds
论文作者
论文摘要
我们研究了Riemannian歧管$ M $中的半线性热量方程的初始值问题$ u_t-Δu= u^p $,并在$ m $上使用非负rad radon量$μ$作为初始数据。我们为问题的局部时间溶解度提供了鲜明的条件,以完全和连接的$ m $具有正面的注射率半径和有界的截面曲率。
We study the solvability of the initial value problem for the semilinear heat equation $u_t-Δu=u^p$ in a Riemannian manifold $M$ with a nonnegative Radon measure $μ$ on $M$ as initial data. We give sharp conditions on the local-in-time solvability of the problem for complete and connected $M$ with positive injectivity radius and bounded sectional curvature.