论文标题
从一系列静态观点的持续无目标外部校准对多传感器系统的连续校准
Continuous Target-free Extrinsic Calibration of a Multi-Sensor System from a Sequence of Static Viewpoints
论文作者
论文摘要
移动机器人应用需要有关平台上各个传感器的几何位置的精确信息。此信息由外部校准参数给出,该参数定义了传感器如何相对于固定参考坐标系进行旋转和翻译。错误的校准参数对典型的机器人估计任务有负面影响,例如大满贯。在这项工作中,我们提出了一种新方法,用于在机器人操作过程中对校准参数进行连续估算。参数估计基于点云的匹配,这些点云是由传感器从多个静态观点获取的。因此,我们的方法不需要任何特殊的校准目标,并且适用于可以将测量值转换为点云的任何传感器。我们通过校准由2个LIDAR传感器,3个相机和一个成像雷达传感器组成的多传感器系统来证明我们方法的适用性。
Mobile robotic applications need precise information about the geometric position of the individual sensors on the platform. This information is given by the extrinsic calibration parameters which define how the sensor is rotated and translated with respect to a fixed reference coordinate system. Erroneous calibration parameters have a negative impact on typical robotic estimation tasks, e.g. SLAM. In this work we propose a new method for a continuous estimation of the calibration parameters during operation of the robot. The parameter estimation is based on the matching of point clouds which are acquired by the sensors from multiple static viewpoints. Consequently, our method does not need any special calibration targets and is applicable to any sensor whose measurements can be converted to point clouds. We demonstrate the suitability of our method by calibrating a multi-sensor system composed by 2 lidar sensors, 3 cameras, and an imaging radar sensor.