论文标题
列表边颜色,有界最高学位
List-Edge-Coloring with Bounded Maximum Degree
论文作者
论文摘要
对于图$ g $,我们表明,如果$ mad(g)<m $,则$χ'_ \ ell(g)\leqΔ+1 $,其中$ m $依赖$δ$和$χ'_\ ell(g)$是$ g $的列表 - 奇异索引。当$δ\ leq 20 $ $ m $的值接近$ \ frac {1} {2}Δ$,但是随着$δ$的增加,$Δ$增加$ m $会渐近,大约$ \ frac {1} {1} {4} {4}δ+5 $。
For a graph $G$, we show that if $mad(G)<m$, then $χ'_\ell(G)\leq Δ+1$ where $m$ depends upon $Δ$ and $χ'_\ell(G)$ is the list-chromatic index of $G$. When $Δ\leq 20$ the value of $m$ is close to $\frac{1}{2}Δ$, but as $Δ$ increases $m$ becomes asymptotic to about $\frac{1}{4}Δ+5$.