论文标题

Kardar-Parisi-Zhang的普遍性在离散的二维驱动激发激子偏振子冷凝物中

Kardar-Parisi-Zhang universality in discrete two-dimensional driven-dissipative exciton polariton condensates

论文作者

Deligiannis, Konstantinos, Fontaine, Quentin, Squizzato, Davide, Richard, Maxime, Ravets, Sylvain, Bloch, Jacqueline, Minguzzi, Anna, Canet, Léonie

论文摘要

量子多体系统波动的统计数据高度揭示其性质。在表现出宏观量子相干性的驱动脱水系统中,作为不一致的泵送下的激子北极星冷凝物,可以将相动态映射到随机的Kardar-Parisi-Zhang(KPZ)方程。但是,在两个维度(2D)中,理论上认为KPZ制度可能因涡旋的存在而阻碍,并且据报道非平衡BKT行为接近凝结阈值。我们在这里证明,当考虑了离散的2D极化系统时,可以出现通用的KPZ属性。我们通过对离散随机广义的GROSS-PITAEVSKII方程进行广泛的数值模拟来支持我们的分析。我们表明,冷凝水的一阶相关函数在时空和时间上表现出拉伸的指数行为,具有2D kPz通用类别的关键指数特征,发现相关的缩放函数与函数重新分配组源于KPZ理论相匹配。我们还获得了相波的分布,并发现它是非高斯的,如KPZ随机过程所期望的那样。

The statistics of the fluctuations of quantum many-body systems are highly revealing of their nature. In driven-dissipative systems displaying macroscopic quantum coherence, as exciton polariton condensates under incoherent pumping, the phase dynamics can be mapped to the stochastic Kardar-Parisi-Zhang (KPZ) equation. However, in two dimensions (2D), it was theoretically argued that the KPZ regime may be hindered by the presence of vortices, and a non-equilibrium BKT behavior was reported close to condensation threshold. We demonstrate here that, when a discretized 2D polariton system is considered, universal KPZ properties can emerge. We support our analysis by extensive numerical simulations of the discrete stochastic generalized Gross-Pitaevskii equation. We show that the first-order correlation function of the condensate exhibits stretched exponential behaviors in space and time with critical exponents characteristic of the 2D KPZ universality class, and find that the related scaling function accurately matches the KPZ theoretical one, stemming from functional Renormalization Group. We also obtain the distribution of the phase fluctuations and find that it is non-Gaussian, as expected for a KPZ stochastic process.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源