论文标题

图像中的Furigana文本检测

Detection of Furigana Text in Images

论文作者

Bjerregaard, Nikolaj Kjøller, Cheplygina, Veronika, Heinrich, Stefan

论文摘要

Furigana是日语写作中使用的发音笔记。能够检测到这些可以帮助改善光学特征识别(OCR)性能,或通过正确显示Furigana来更准确地对日本书面媒体进行更准确的数字副本。该项目着重于在日本书籍和漫画中检测Furigana。尽管已经研究了对日本文本的检测的研究,但目前尚无提议检测Furigana的方法。 我们构建了一个包含日本书面媒体和Furigana注释的新数据集。我们为此类数据提出了一个评估度量,该度量与对象检测中使用的评估协议相似,除非它允许对象组通过一个注释标记。我们提出了一种基于数学形态和连接组件分析的Furigana检测方法。我们评估数据集的检测,并比较文本提取的不同方法。我们还分别评估了不同类型的图像,例如书籍和漫画,并讨论每种图像的挑战。 所提出的方法在数据集上达到76 \%的F1得分。该方法在常规书籍上表现良好,但在漫画和不规则格式的书籍上的表现较少。最后,我们表明所提出的方法可以在漫画109数据集上提高OCR的性能5 \%。 源代码可通过\ texttt {\ url {https://github.com/nikolajkb/furiganadetection}}获得

Furigana are pronunciation notes used in Japanese writing. Being able to detect these can help improve optical character recognition (OCR) performance or make more accurate digital copies of Japanese written media by correctly displaying furigana. This project focuses on detecting furigana in Japanese books and comics. While there has been research into the detection of Japanese text in general, there are currently no proposed methods for detecting furigana. We construct a new dataset containing Japanese written media and annotations of furigana. We propose an evaluation metric for such data which is similar to the evaluation protocols used in object detection except that it allows groups of objects to be labeled by one annotation. We propose a method for detection of furigana that is based on mathematical morphology and connected component analysis. We evaluate the detections of the dataset and compare different methods for text extraction. We also evaluate different types of images such as books and comics individually and discuss the challenges of each type of image. The proposed method reaches an F1-score of 76\% on the dataset. The method performs well on regular books, but less so on comics, and books of irregular format. Finally, we show that the proposed method can improve the performance of OCR by 5\% on the manga109 dataset. Source code is available via \texttt{\url{https://github.com/nikolajkb/FuriganaDetection}}

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源